Research on Dynamics of a Bicycle Robot with Front-Wheel Drive by Using Kane Equations Based on Screw Theory

Aiming at the dynamics of a front-wheel drive bicycle, a precise and effective mathematical model was constructed by use of Kane dynamics equations in form of screw theory in this paper. Firstly, partial velocity matrixes were achieved by recursion derivation of velocities and angular velocities of links. Then, dynamical model was developed according to the derived partial velocity matrixes. And finally, numerical simulation about the developed dynamics was carried out to analyze the dynamical characteristics of the robot. The results show that the analyses are in correspondence with the real working condition of the bicycle robot, which verifies the derived dynamical model reliably.

[1]  Himanshu Dutt Sharma,et al.  A Robotic Model (ROBI) of Autonomous Bicycle System , 2006, 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06).

[2]  G. Franke,et al.  An advanced model of bicycle dynamics , 1990 .

[3]  Liao Qi-zheng,et al.  Dynamic Modeling of Bicycle Robot and Nonlinear Control Based on Feedback Linearization of MIMO Systems , 2007 .

[4]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[5]  T. Murakami,et al.  Self sustaining bicycle robot with steering controller , 2004, The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04..

[6]  M. Yamakita,et al.  Automatic control of bicycles with a balancer , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[7]  龚振邦,et al.  INVESTIGATION ON KANE DYNAMIC EQUATIONS BASED ON SCREW THEORY FOR OPEN-CHAIN MANIPULATORS , 2005 .

[8]  K.J. Astrom,et al.  Bicycle dynamics and control: adapted bicycles for education and research , 2005, IEEE Control Systems.

[9]  Y. Henaff Dynamical stability of the bicycle , 1987 .

[10]  Yanbin Liu,et al.  Dynamics modeling of an unmanned bicycle with parallel mechanism adjusting stability , 2009, 2009 International Conference on Mechatronics and Automation.

[11]  H.D. Sharma,et al.  Simulation model for studying inherent stability characteristics of autonomous bicycle , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[12]  Wu Hongtao Research on Modeling of Robot Manipulator Dynamics Based on Screw Theory , 2008 .

[13]  Liu Wu-fa,et al.  Investigation on Kane dynamic equations based on screw theory for open-chain manipulators , 2005 .