Gain-Scheduling and Iterative Feedback Tuning of PI Controllers for Longitudinal Slip Control

The paper suggests PI controllers for longitudinal slip control in the framework of a laboratory anti-lock braking system (ABS). The new design methods make use of gain-scheduling and iterative feedback tuning. They prove to be relatively simple and transparent thus ensuring low-cost automation solutions. The digital implementation of the controllers is done for the laboratory ABS. Real-time experimental results validate the theoretical approaches.

[1]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[2]  Sergey V. Drakunov,et al.  ABS control using optimum search via sliding modes , 1995, IEEE Trans. Control. Syst. Technol..

[3]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[4]  S. Gunnarsson,et al.  A convergent iterative restricted complexity control design scheme , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[5]  Igor Skrjanc,et al.  Interval Fuzzy Model Identification Using$l_infty$-Norm , 2005, IEEE Transactions on Fuzzy Systems.

[6]  Kevin M. Passino,et al.  Intelligent control for brake systems , 1999, IEEE Trans. Control. Syst. Technol..

[7]  Christopher M. Bingham,et al.  Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems , 2003, IEEE Trans. Veh. Technol..

[8]  Teresa Orlowska-Kowalska,et al.  Control of the Drive System With Stiff and Elastic Couplings Using Adaptive Neuro-Fuzzy Approach , 2007, IEEE Transactions on Industrial Electronics.

[9]  Jens Kalkkuhl,et al.  Wheel slip control in ABS brakes using gain scheduled constrained LQR , 2001, 2001 European Control Conference (ECC).

[10]  Stephen Yurkovich,et al.  Fuzzy learning control for antiskid braking systems , 1993, IEEE Trans. Control. Syst. Technol..

[11]  Stefan Preitl,et al.  Fuzzy controllers for tire slip control in anti-lock braking systems , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[12]  T.A. Johansen,et al.  Hybrid control strategies in ABS , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[13]  Zsolt Csaba Johanyák,et al.  The Effect of Different Fuzzy Partition Parameterization Strategies in Gradient Descent Parameter Identification , 2007, 2007 4th International Symposium on Applied Computational Intelligence and Informatics.

[14]  Uwe Kiencke,et al.  Automotive Control Systems , 2005 .

[15]  Antonio Ortiz,et al.  A fuzzy logic control for antilock braking system integrated in the IMMa tire test bench , 2005, IEEE Transactions on Vehicular Technology.