Engineering of silicon surfaces at the micro- and nanoscales for cell adhesion and migration control
暂无分享,去创建一个
Aurelio Climent-Font | Miguel Manso-Silván | Vicente Torres-Costa | Josefa P García-Ruiz | J. García-Ruíz | R. Martín-Palma | A. Muñoz-Noval | V. Torres-Costa | A. Climent-Font | G. Martínez-Muñoz | Vanessa Sánchez-Vaquero | Álvaro Muñoz-Noval | M. Manso-Silván | Laura González-Méndez | Raúl J Martín-Palma | Gonzalo Martínez-Muñoz | Esther Punzón-Quijorna | Darío Gallach-Pérez | E. Punzón-Quijorna | V. Sánchez-Vaquero | L. González-Méndez | D. Gallach-Pérez
[1] Hirofumi Hidai,et al. The effect of micronscale anisotropic cross patterns on fibroblast migration. , 2010, Biomaterials.
[2] Volker Lehmann,et al. Electrochemistry of Silicon , 2002 .
[3] D A Lauffenburger,et al. Mathematical model for the effects of adhesion and mechanics on cell migration speed. , 1991, Biophysical journal.
[4] R. Langer,et al. Engineering substrate topography at the micro- and nanoscale to control cell function. , 2009, Angewandte Chemie.
[5] L. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .
[6] J. Yeh,et al. Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. , 2010, European cells & materials.
[7] Bernard A Roos,et al. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. , 2006, Bone.
[8] J. M. Martínez-Duart,et al. High-resolution transmission electron microscopic analysis of porous silicon∕silicon interface , 2004 .
[9] C. Kielty,et al. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors , 2007, Journal of cellular and molecular medicine.
[10] Kenneth M. Yamada,et al. Random versus directionally persistent cell migration , 2009, Nature Reviews Molecular Cell Biology.
[11] J. Davies,et al. Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy , 2009, PloS one.
[12] Functionality of porous silicon particles: Surface modification for biomedical applications , 2010 .
[13] Kenneth M. Yamada,et al. One-dimensional topography underlies three-dimensional fibrillar cell migration , 2009, The Journal of cell biology.
[14] Andre Levchenko,et al. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. , 2010, Biomacromolecules.
[15] Astrid Magenau,et al. How Do Cells Make Decisions: Engineering Micro- and Nanoenvironments for Cell Migration , 2010, Journal of oncology.
[16] Milko Jakšić,et al. Micromachining of silicon with a proton microbeam , 1999 .
[17] C. Fotakis,et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. , 2010, Acta biomaterialia.
[18] M. Yousaf,et al. Geometric control of stem cell differentiation rate on surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[19] Andrew A. Bettiol,et al. Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization , 2006 .
[20] J. García-Ruíz,et al. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications. , 2011, Journal of biomedical optics.
[21] Sundararajan V Madihally,et al. Cell colonization in degradable 3D porous matrices , 2008, Cell adhesion & migration.
[22] Lifeng Kang,et al. NANO/MICROSCALE TECHNOLOGIES FOR DRUG DELIVERY , 2011 .