Optimizing Regular Edge Labelings

A regular edge labeling (REL) of an irreducible triangulation G uniquely defines a rectangular dual of G. Rectangular duals find applications in various areas: as floor plans of electronic chips, in architectural designs, as rectangular cartograms, or as treemaps. An irreducible triangulation can have many RELs and hence many rectangular duals. Depending on the specific application different duals might be desirable. In this paper we consider optimization problems on RELs and show how to find optimal or near-optimal RELs for various quality criteria. Furthermore, we give upper and lower bounds on the number of RELs.

[1]  Sartaj Sahni,et al.  A linear time algorithm to check for the existence of a rectangular dual of a planar triangulated graph , 1987, Networks.

[2]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.

[3]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[4]  Bettina Speckmann,et al.  Area-universal rectangular layouts , 2009, SCG '09.

[5]  G. Birkhoff Rings of sets , 1937 .

[6]  Kevin Buchin,et al.  On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.

[7]  Andreas Björklund,et al.  The Travelling Salesman Problem in Bounded Degree Graphs , 2008, ICALP.

[8]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[9]  Katsuhisa Yamanaka,et al.  On the Number of Rectangular Drawings : Exact Counting and Lower and Upper Bounds , 2007 .

[10]  Stefan Felsner,et al.  On the Number of Planar Orientations with Prescribed Degrees , 2008, Electron. J. Comb..

[11]  Donna Peuquet,et al.  An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane , 1987, Pattern Recognit..

[12]  Bettina Speckmann,et al.  Connect the Dot: Computing Feed-Links with Minimum Dilation , 2009, WADS.

[13]  M. Lewin On nonnegative matrices , 1971 .

[14]  Majid Sarrafzadeh,et al.  Sliceable Floorplanning by Graph Dualization , 1995, SIAM J. Discret. Math..

[15]  Edwin Kinnen,et al.  Rectangular duals of planar graphs , 1985, Networks.

[16]  Goos Kant,et al.  Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications in Graph Drawing Problems , 1997, Theor. Comput. Sci..

[17]  Raimund Seidel,et al.  On the Number of Cycles in Planar Graphs , 2007, COCOON.

[18]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[19]  E. Raisz The Rectangular Statistical Cartogram , 1934 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  Ron Y. Pinter,et al.  A bijection between permutations and floorplans, and its applications , 2006, Discret. Appl. Math..

[22]  Éric Fusy,et al.  Transversal structures on triangulations: A combinatorial study and straight-line drawings , 2006, Discret. Math..

[23]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[24]  Bettina Speckmann,et al.  On rectangular cartograms , 2007 .

[25]  David Eppstein,et al.  Orientation-Constrained Rectangular Layouts , 2009, WADS.

[26]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[27]  Bettina Speckmann,et al.  A Linear Programming Approach to Rectangular Cartograms , 2006 .

[28]  Ferran Hurtado,et al.  On the number of plane graphs , 2006, SODA '06.

[29]  Robert Sámal,et al.  Induced Trees in Triangle-Free Graphs , 2008, Electron. J. Comb..

[30]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.