Oscillations for all ¯\_(ツ)_/¯? A commentary on Meyer, Sun & Martin (2020)

ABSTRACT This is a commentary on> <Meyer, Sun & Martin (2019), Synchronous, but not entrained: exogenous and endogenous cortical rhythms of speech and language processing, <DOI of target article>

[1]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  David Poeppel,et al.  Cortical tracking of constituent structure in language acquisition , 2018, Cognition.

[3]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[4]  P. Schyns,et al.  Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain , 2013, PLoS biology.

[5]  Anne-Lise Giraud,et al.  θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech , 2017, The Journal of Neuroscience.

[6]  Vincenzo Crunelli,et al.  Cellular Dynamics of Cholinergically Induced α (8–13 Hz) Rhythms in Sensory Thalamic Nuclei In Vitro , 2008, The Journal of Neuroscience.

[7]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[8]  Matthew K. Leonard,et al.  The Encoding of Speech Sounds in the Superior Temporal Gyrus , 2019, Neuron.

[9]  J. Gee,et al.  Large-scale neural network for sentence processing , 2006, Brain and Language.

[10]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[11]  Xiaolin Hu,et al.  A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex , 2019, PLoS Comput. Biol..

[12]  Christopher K. Kovach,et al.  Temporal Envelope of Time-Compressed Speech Represented in the Human Auditory Cortex , 2009, The Journal of Neuroscience.

[13]  Anne-Lise Giraud,et al.  The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex , 2014, Nature Communications.

[14]  Keith Johnson,et al.  Encoding of Articulatory Kinematic Trajectories in Human Speech Sensorimotor Cortex , 2018, Neuron.

[15]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[16]  Sylvain Baillet,et al.  Motor origin of temporal predictions in auditory attention , 2017, Proceedings of the National Academy of Sciences.

[17]  Oded Ghitza,et al.  Behavioral evidence for the role of cortical θ oscillations in determining auditory channel capacity for speech , 2014, Front. Psychol..

[18]  Richard S. J. Frackowiak,et al.  Neurophysiological origin of human brain asymmetry for speech and language , 2010, Proceedings of the National Academy of Sciences.

[19]  Christoph Börgers,et al.  Toggling between gamma-frequency activity and suppression of cell assemblies , 2013, Front. Comput. Neurosci..

[20]  Franck Ramus,et al.  Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG , 2013, Front. Hum. Neurosci..

[21]  Jutta L. Mueller,et al.  Oscillatory EEG dynamics underlying automatic chunking during sentence processing , 2017, NeuroImage.

[22]  Nicola Molinaro,et al.  Theta oscillations mediate pre-activation of highly expected word initial phonemes , 2018, Scientific Reports.

[23]  Maria Mody,et al.  Gamma phase locking modulated by phonological contrast during auditory comprehension in reading disability , 2012, Neuroreport.

[24]  David Poeppel,et al.  Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing , 2014, NeuroImage.

[25]  Anne-Lise Giraud,et al.  Combining predictive coding and neural oscillations enables online syllable recognition in natural speech , 2020, Nature Communications.

[26]  Marcelo A. Montemurro,et al.  Cortical Resonance Frequencies Emerge from Network Size and Connectivity , 2016, PLoS Comput. Biol..

[27]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Oded Ghitza,et al.  The theta-syllable: a unit of speech information defined by cortical function , 2013, Front. Psychol..

[29]  D. Poeppel,et al.  Cortical Tracking of Hierarchical Linguistic Structures in Connected Speech , 2015, Nature Neuroscience.

[30]  Franck Ramus,et al.  Altered Low-Gamma Sampling in Auditory Cortex Accounts for the Three Main Facets of Dyslexia , 2011, Neuron.

[31]  Luc H. Arnal,et al.  Proactive Sensing of Periodic and Aperiodic Auditory Patterns , 2018, Trends in Cognitive Sciences.

[32]  Merle Horne,et al.  Time-Driven Effects on Processing Relative Clauses , 2016, Journal of psycholinguistic research.

[33]  Alexandre Hyafil,et al.  Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions , 2015, Trends in Neurosciences.

[34]  Tobias Reichenbach,et al.  Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise , 2019, The Journal of Neuroscience.

[35]  Synchronous, but not entrained: exogenous and endogenous cortical rhythms of speech and language processing , 2020 .

[36]  Oded Ghitza,et al.  Linking Speech Perception and Neurophysiology: Speech Decoding Guided by Cascaded Oscillators Locked to the Input Rhythm , 2011, Front. Psychology.

[37]  Alexandre Hyafil,et al.  Speech encoding by coupled cortical theta and gamma oscillations , 2015, eLife.

[38]  Joachim Gross,et al.  Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features , 2018, PLoS biology.

[39]  E. Markessis,et al.  N1b and Na subcomponents of the N100 long latency auditory evoked-potential: Neurophysiological correlates of voicing in French-speaking subjects , 2009, Clinical Neurophysiology.

[40]  David Poeppel,et al.  Cortical oscillations and speech processing: emerging computational principles and operations , 2012, Nature Neuroscience.

[41]  Oded Ghitza,et al.  Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale , 2009, PLoS Comput. Biol..

[42]  Shawn D. Burton,et al.  Establishing a Statistical Link between Network Oscillations and Neural Synchrony , 2015, PLoS Comput. Biol..

[43]  Victor J. Boucher,et al.  The Role of Low-frequency Neural Oscillations in Speech Processing: Revisiting Delta Entrainment , 2019, Journal of Cognitive Neuroscience.

[44]  Viktor K. Jirsa,et al.  Time Scale Hierarchies in the Functional Organization of Complex Behaviors , 2011, PLoS Comput. Biol..

[45]  Keith Johnson,et al.  Phonetic Feature Encoding in Human Superior Temporal Gyrus , 2014, Science.

[46]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[47]  Steven Greenberg,et al.  On the Possible Role of Brain Rhythms in Speech Perception: Intelligibility of Time-Compressed Speech with Periodic and Aperiodic Insertions of Silence , 2009, Phonetica.

[48]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[49]  Bettina Sorger,et al.  Neural Entrainment to Speech Modulates Speech Intelligibility , 2017, Current Biology.

[50]  Erich Schröger,et al.  Mapping Symbols to Sounds: Electrophysiological Correlates of the Impaired Reading Process in Dyslexia , 2012, Front. Psychology.

[51]  Lucy M. Carracedo,et al.  Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex , 2008, Frontiers in cellular neuroscience.