Statistical inference for time varying origin–destination matrices

We consider the problem of estimating a sequence of origin-destination matrices from link count data collected on a daily basis. We recommend a parsimonious parameterization for the time varying matrices so as to permit application of standard statistical estimation theory. A number of examples of suitably parameterized matrices are provided. We propose a multivariate normal model for the link counts, based on an underlying overdispersed Poisson process. While likelihood based inference is feasible given information from sufficiently many network links, we focus on Bayesian methods of estimation because of their ability to incorporate prior information in a natural manner. We derive the Bayesian posterior distribution, but note that its normalizing constant is not available in closed form. A Markov chain Monte Carlo algorithm for generating posterior samples is therefore developed. From this we can obtain point estimates, and corresponding measures of precision, for parameters of the origin-destination matrix. The methodology is illustrated by an example involving OD matrix estimation for a section of the road network in the English city of Leicester.

[1]  Martin L. Hazelton,et al.  Estimation of origin-destination matrices from link flows on uncongested networks , 2000 .

[2]  David Watling,et al.  MAXIMUM LIKELIHOOD ESTIMATION OF AN ORIGIN-DESTINATION MATRIX FROM A PARTIAL REGISTRATION PLATE SURVEY , 1994 .

[3]  Hanif D. Sherali,et al.  Estimation of origin–destination trip-tables based on a partial set of traffic link volumes , 2003 .

[4]  Pravin Varaiya,et al.  Real-Time Estimation of Origin–Destination Matrices with Partial Trajectories from Electronic Toll Collection Tag Data , 2005 .

[5]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[6]  M. Cremer,et al.  A new class of dynamic methods for the identification of origin-destination flows , 1987 .

[7]  Martin L. Hazelton,et al.  Inference for origin–destination matrices: estimation, prediction and reconstruction , 2001 .

[8]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .

[9]  M. Bell THE ESTIMATION OF ORIGIN-DESTINATION MATRICES BY CONSTRAINED GENERALISED LEAST SQUARES , 1991 .

[10]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[11]  Taehyung Park,et al.  Estimation of dynamic origin-destination trip tables for a general network , 2001 .

[12]  Baibing Li,et al.  Bayesian Inference for Origin-Destination Matrices of Transport Networks Using the EM Algorithm , 2005, Technometrics.

[13]  Warren B. Powell,et al.  An algorithm for the equilibrium assignment problem with random link times , 1982, Networks.

[14]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[15]  Martin L. Hazelton,et al.  SOME COMMENTS ON ORIGIN-DESTINATION MATRIX ESTIMATION , 2003 .

[16]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .

[17]  M. Opper,et al.  inverse problems: some new approaches , 2022 .

[18]  Hai Yang Heuristic algorithms for the bilevel origin-destination matrix estimation problem , 1995 .

[19]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[20]  Gang-Len Chang,et al.  A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix , 2007 .

[21]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[22]  Michael A. West,et al.  Bayesian Inference on Network Traffic Using Link Count Data , 1998 .

[23]  Martin L. Hazelton,et al.  Estimation of origin–destination trip rates in Leicester , 2001 .

[24]  Carlos F. Daganzo,et al.  On Stochastic Models of Traffic Assignment , 1977 .

[25]  Shinichi Nakajima,et al.  Analytic Solution of Hierarchical Variational Bayes in Linear Inverse Problem , 2006, ICANN.

[26]  Michael J. Maher,et al.  A STATISTICAL PROCEDURE FOR ESTIMATING A MEAN ORIGIN-DESTINATION MATRIX FROM A PARTIAL REGISTRATION PLATE SURVEY , 1992 .

[27]  Ian Palmer,et al.  Validating the results of a route choice simulator Transportation Research C 5 , 1997 .

[28]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[29]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .