Big bang singularity resolution in quantum cosmology

We evaluate the physical viability and logical strength of an array of putative criteria for big bang singularity resolution in quantum cosmology. Based on this analysis, we propose a mutually consistent set of constitutive conditions, which we argue should be taken to jointly define ‘global dynamics’ and ‘local curvature’ big bang singularity resolution in this context. Whilst the present article will focus exclusively on evaluating resolution criteria for big bang singularities in the context of finite dimensional models of quantum cosmology, it is also hoped that the core features of our analysis will be extendible to a more general analysis of criteria for quantum singularity resolution in cosmology and black hole physics.

[1]  J. Weatherall Where Does General Relativity Break Down? , 2022, Philosophy of Science.

[2]  N. Warrier The case of the vanishing wavefunction. , 2022, Studies in history and philosophy of science.

[3]  Steffen Gielen,et al.  Unitarity and quantum resolution of gravitational singularities , 2022, International Journal of Modern Physics D.

[4]  Jan Sbierski On holonomy singularities in general relativity and the Cloc0,1-inextendibility of space-times , 2022, Duke Mathematical Journal.

[5]  Steffen Gielen,et al.  Unitarity, clock dependence and quantum recollapse in quantum cosmology , 2021, Classical and Quantum Gravity.

[6]  C. Fewster,et al.  A semiclassical singularity theorem , 2021, Classical and Quantum Gravity.

[7]  Karen Crowther,et al.  Four Attitudes Towards Singularities in the Search for a Theory of Quantum Gravity , 2021, 2112.08531.

[8]  K. Landsman Foundations of General Relativity: From Einstein to Black Holes , 2021 .

[9]  A. Ashtekar,et al.  A short review of loop quantum gravity , 2021, Reports on progress in physics. Physical Society.

[10]  L. Marchetti,et al.  Quantum Fluctuations in the Effective Relational GFT Cosmology , 2020, Frontiers in Astronomy and Space Sciences.

[11]  L. Marchetti,et al.  Effective relational cosmological dynamics from quantum gravity , 2020, Journal of High Energy Physics.

[12]  Philipp A. Hoehn,et al.  Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings , 2020, Frontiers in Physics.

[13]  Philipp A. Hoehn,et al.  Trinity of relational quantum dynamics , 2019, Physical Review D.

[14]  J. Rarity,et al.  Wavefunctions can Simultaneously Represent Knowledge and Reality , 2021 .

[15]  Jan Sbierski On holonomy singularities in general relativity and the $C^{0,1}_{\mathrm{loc}}$-inextendibility of spacetimes , 2020, 2007.12049.

[16]  Steffen Gielen,et al.  Singularity resolution depends on the clock , 2020, Classical and Quantum Gravity.

[17]  M. Bojowald Critical Evaluation of Common Claims in Loop Quantum Cosmology , 2020, Universe.

[18]  Philipp A. Hoehn,et al.  How to switch between relational quantum clocks , 2018, New Journal of Physics.

[19]  C. Kiefer,et al.  Singularity avoidance in anisotropic quantum cosmology , 2019, Journal of Physics: Conference Series.

[20]  W. Struyve,et al.  Elimination of cosmological singularities in quantum cosmology by suitable operator orderings , 2019, Physical Review D.

[21]  C. Kiefer,et al.  Singularity avoidance in Bianchi I quantum cosmology , 2019, The European Physical Journal C.

[22]  J. Olmedo,et al.  Power spectrum of primordial perturbations for an emergent universe in quantum reduced loop gravity , 2018, Journal of Cosmology and Astroparticle Physics.

[23]  Philipp A. Hoehn Switching Internal Times and a New Perspective on the ‘Wave Function of the Universe’ , 2018, Universe.

[24]  G. Fournodavlos,et al.  Generic Blow-Up Results for the Wave Equation in the Interior of a Schwarzschild Black Hole , 2018, Archive for Rational Mechanics and Analysis.

[25]  Fabio M. Mele,et al.  Holographic signatures of resolved cosmological singularities II: numerical investigations , 2018, Classical and Quantum Gravity.

[26]  Karim P. Y. Th'ebault,et al.  Bouncing unitary cosmology I. Mini-superspace general solution , 2018, Classical and Quantum Gravity.

[27]  Karim P. Y. Th'ebault,et al.  Bouncing unitary cosmology II. Mini-superspace phenomenology , 2018, Classical and Quantum Gravity.

[28]  J. Schliemann,et al.  Holographic signatures of resolved cosmological singularities , 2016, Journal of High Energy Physics.

[29]  Suddhasattwa Brahma,et al.  No-boundary wave function for loop quantum cosmology , 2018, Physical Review D.

[30]  Karim P. Y. Th'ebault,et al.  Superpositions of the cosmological constant allow for singularity resolution and unitary evolution in quantum cosmology , 2018, Physics Letters B.

[31]  B. Carr,et al.  Complete conformal classification of the Friedmann–Lemaître–Robertson–Walker solutions with a linear equation of state , 2018, 1801.01966.

[32]  A. Dapor,et al.  Emergent de Sitter Epoch of the Quantum Cosmos from Loop Quantum Cosmology. , 2018, Physical review letters.

[33]  Parampreet Singh,et al.  Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes , 2017, 1712.09474.

[34]  M. Bojowald,et al.  Time in quantum cosmology , 2016, Physical Review D.

[35]  David Sloan,et al.  Through the big bang: Continuing Einstein's equations beyond a cosmological singularity , 2016, 1607.02460.

[36]  Parampreet Singh,et al.  Resolution of strong singularities and geodesic completeness in loop quantum Bianchi-II spacetimes , 2017, 1707.08556.

[37]  Yemima Ben-menahem The PBR theorem: Whose side is it on? , 2017 .

[38]  M. Sakellariadou,et al.  Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates , 2016, 1603.01764.

[39]  L. Sindoni,et al.  Bouncing cosmologies from quantum gravity condensates , 2016, 1602.08271.

[40]  R. Lazkoz,et al.  Observational constraints on cosmological future singularities , 2016, 1602.06211.

[41]  N. Turok,et al.  Perfect Quantum Cosmological Bounce. , 2015, Physical review letters.

[42]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[43]  D. M. Blas,et al.  Loop quantization of the Gowdy model with local rotational symmetry , 2017, 1706.05673.

[44]  K. Thébault,et al.  Schrödinger Evolution for the Universe: Reparametrization , 2015, 1502.01225.

[45]  N. Pinto-Neto,et al.  Wheeler-DeWitt quantization and singularities , 2015, 1501.04181.

[46]  P. Małkiewicz Multiple choices of time in quantum cosmology , 2014, 1407.3457.

[47]  D. Brizuela Statistical moments for classical and quantum dynamics: formalism and generalized uncertainty relations , 2014, 1410.5776.

[48]  L. Fern'andez-Jambrina Grand rip and grand bang/crunch cosmological singularities , 2014, 1408.6997.

[49]  G. Calcagni Loop quantum cosmology from group field theory , 2014, 1407.8166.

[50]  S. Gryb,et al.  Symmetry and Evolution in Quantum Gravity , 2013, 1303.7139.

[51]  P. Joshi Spacetime Singularities , 2013, 1311.0449.

[52]  G. A. M. Marug'an,et al.  Singularity avoidance in the hybrid quantization of the Gowdy model , 2013, 1310.1290.

[53]  D. Craig,et al.  Consistent probabilities in loop quantum cosmology , 2013, 1306.6142.

[54]  M. Bojowald Quantum cosmology: effective theory , 2012, 1209.3403.

[55]  D. Gitman,et al.  Self-adjoint Extensions in Quantum Mechanics: General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials , 2012 .

[56]  Parampreet Singh Curvature invariants, geodesics, and the strength of singularities in Bianchi-I loop quantum cosmology , 2011, 1112.6391.

[57]  A. Ashtekar,et al.  Positive cosmological constant in loop quantum cosmology , 2011, 1112.0360.

[58]  K. Thébault,et al.  The Role of Time in Relational Quantum Theories , 2011, 1110.2429.

[59]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[60]  Jeffrey A. Barrett,et al.  The Everett interpretation of quantum mechanics : collected works 1955-1980 with commentary , 2012 .

[61]  A. Ashtekar,et al.  Loop quantum cosmology: a status report , 2011, 1108.0893.

[62]  M. Bojowald Quantum Cosmology: A Fundamental Description of the Universe , 2011 .

[63]  M. Koop,et al.  High-order quantum back-reaction and quantum cosmology with a positive cosmological constant , 2010, 1011.3022.

[64]  Eduardo J S Villaseñor,et al.  Quantization of Midisuperspace Models , 2010, Living reviews in relativity.

[65]  E. Anderson Problem of time in quantum gravity , 2010, 1206.2403.

[66]  D. Craig,et al.  Consistent probabilities in Wheeler-DeWitt quantum cosmology , 2010, 1006.3837.

[67]  C. Kiefer Can singularities be avoided in quantum cosmology? , 2010 .

[68]  R. Grimm,et al.  Forty years of Efimov physics: How a bizarre prediction turned into a hot topic , 2010 .

[69]  D. Salisbury,et al.  Observables in classical canonical gravity: folklore demystified , 2010, 1001.2726.

[70]  A. Ashtekar,et al.  Loop quantum cosmology of Bianchi type II models , 2009, 0910.1278.

[71]  Parampreet Singh Are loop quantum cosmos never singular? , 2009, 0901.2750.

[72]  J. Pullin,et al.  Conditional probabilities with Dirac observables and the problem of time in quantum gravity , 2008, 0809.4235.

[73]  T. Thiemann,et al.  Are the spectra of geometrical operators in Loop Quantum Gravity really discrete , 2007, 0708.1721.

[74]  John Earman,et al.  Essential self-adjointness: implications for determinism and the classical–quantum correspondence , 2009, Synthese.

[75]  J. Barbour,et al.  Constraints and gauge transformations: Dirac's theorem is not always valid , 2008, 0808.1223.

[76]  A. Ashtekar,et al.  Robustness of key features of loop quantum cosmology , 2007, 0710.3565.

[77]  D. Garfinkle Numerical simulations of general gravitational singularities , 2007, 0808.0160.

[78]  Robert W. Spekkens,et al.  Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.

[79]  M. Bojowald Singularities and Quantum Gravity , 2007, gr-qc/0702144.

[80]  A. Ashtekar,et al.  Loop quantum cosmology of k = 1 FRW models , 2006, gr-qc/0612104.

[81]  M. Bojowald Large scale effective theory for cosmological bounces , 2006, gr-qc/0608100.

[82]  B. Dittrich Partial and complete observables for Hamiltonian constrained systems , 2004, gr-qc/0411013.

[83]  C. Wuthrich Approaching the Planck Scale from a Generally Relativistic Point of View: A Philosophical Appraisal of Loop Quantum Gravity , 2006 .

[84]  A. Ashtekar,et al.  Quantum Nature of the Big Bang: Improved dynamics , 2006, gr-qc/0607039.

[85]  A. Ashtekar,et al.  Quantum nature of the big bang: An analytical and numerical investigation , 2006, gr-qc/0604013.

[86]  M. Da̧browski Future state of the universe , 2006, astro-ph/0606574.

[87]  A. Ashtekar,et al.  Quantum nature of the big bang. , 2006, Physical review letters.

[88]  M. Bojowald Degenerate configurations, singularities and the non-Abelian nature of loop quantum gravity , 2005, gr-qc/0508118.

[89]  B. Dittrich Partial and complete observables for canonical general relativity , 2005, gr-qc/0507106.

[90]  T. Thiemann,et al.  On (cosmological) singularity avoidance in loop quantum gravity , 2005, gr-qc/0505032.

[91]  S. Gopalakrishnan,et al.  Self-Adjointness and the Renormalization of Singular Potentials , 2006 .

[92]  M. Bojowald,et al.  Effective Equations of Motion for Quantum Systems , 2005, math-ph/0511043.

[93]  M. Visser,et al.  Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities and extremality events , 2005, gr-qc/0508045.

[94]  S. Nojiri,et al.  Properties of singularities in the (phantom) dark energy universe , 2005, hep-th/0501025.

[95]  S. Cotsakis,et al.  Future singularities of isotropic cosmologies , 2004, gr-qc/0409022.

[96]  R. Lazkoz,et al.  Geodesic behavior of sudden future singularities , 2004, gr-qc/0410124.

[97]  J. M. Pons On Dirac's incomplete analysis of gauge transformations , 2004, physics/0409076.

[98]  John D. Barrow,et al.  More general sudden singularities , 2004, gr-qc/0409062.

[99]  S. Nojiri,et al.  Quantum escape of sudden future singularity , 2004, hep-th/0405078.

[100]  R. Lazkoz,et al.  On Big Rip Singularities , 2004, gr-qc/0405020.

[101]  E. Elizalde,et al.  Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up , 2004, hep-th/0405034.

[102]  J. Barrow Sudden future singularities , 2004, gr-qc/0403084.

[103]  D. Minic,et al.  What is Quantum Theory of Gravity , 2004, hep-th/0401028.

[104]  V. Husain,et al.  Singularity resolution in quantum gravity , 2003, gr-qc/0312094.

[105]  M. Kamionkowski,et al.  Phantom energy: dark energy with w <--1 causes a cosmic doomsday. , 2003, Physical review letters.

[106]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[107]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[108]  M. Bojowald Isotropic loop quantum cosmology , 2002, gr-qc/0202077.

[109]  C. Rovelli Partial observables , 2001, gr-qc/0110035.

[110]  J. Mattingly Singularities and Scalar Fields: Matter Theory and General Relativity , 2001, Philosophy of Science.

[111]  M. Bojowald Inverse scale factor in isotropic quantum geometry , 2001, gr-qc/0105067.

[112]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[113]  M. Bojowald Absence of a singularity in loop quantum cosmology. , 2001, Physical review letters.

[114]  Rafael A. Porto,et al.  Relational time in generally covariant quantum systems: four models , 2001, gr-qc/0101057.

[115]  L. Andersson,et al.  Quiescent Cosmological Singularities , 2000, gr-qc/0001047.

[116]  Erik Curiel The Analysis of Singular Spacetimes , 1999, Philosophy of Science.

[117]  R. R. Caldwell,et al.  A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state , 1999, astro-ph/9908168.

[118]  S. Massar,et al.  Unitary and nonunitary evolution in quantum cosmology , 1998, gr-qc/9812045.

[119]  B. Berger Numerical Approaches to Spacetime Singularities , 1998, Living reviews in relativity.

[120]  J. Senovilla Singularity Theorems and Their Consequences , 1998, 1801.04912.

[121]  M. J. Gotay,et al.  Some remarks on singularities in quantum cosmology , 1996, gr-qc/9605025.

[122]  N. A. Lemos Reply to "A Comment on Singularities in Quantum Cosmology" , 1996, gr-qc/9605043.

[123]  Lemos Singularities in a scalar field quantum cosmology. , 1995, Physical review. D, Particles and fields.

[124]  John Earman,et al.  Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes , 1995 .

[125]  D. Marolf,et al.  Quantum probes of spacetime singularities. , 1995, Physical review. D, Particles and fields.

[126]  Pavel Exner,et al.  Hilbert Space Operators in Quantum Physics , 1994 .

[127]  A. Ishikawa,et al.  THE STABILITY OF THE MINISUPERSPACE , 1993, gr-qc/9308004.

[128]  C. Isham Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.

[129]  Hu,et al.  Validity of the minisuperspace approximation: An example from interacting quantum field theory. , 1991, Physical Review D, Particles and fields.

[130]  N. A. Lemos Singular self-adjoint quantum cosmological models in a slow-time gauge , 1991 .

[131]  Rovelli,et al.  Time in quantum gravity: An hypothesis. , 1991, Physical review. D, Particles and fields.

[132]  R. Peierls In defence of “measurement” , 1991 .

[133]  Rovelli,et al.  Quantum mechanics without time: A model. , 1990, Physical review. D, Particles and fields.

[134]  Lemos Inequivalence of unitarity and self-adjointness: An example in quantum cosmology. , 1990, Physical Review D, Particles and fields.

[135]  Ryan,et al.  Is minisuperspace quantization valid?: Taub in mixmaster. , 1989, Physical review. D, Particles and fields.

[136]  Unruh,et al.  Time and the interpretation of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.

[137]  Vilenkin Interpretation of the wave function of the Universe. , 1989, Physical review. D, Particles and fields.

[138]  A. Kro-dotlak Towards the proof of the cosmic censorship hypothesis in cosmological space-times , 1987 .

[139]  F. Tipler Interpreting the wave function of the universe , 1986 .

[140]  A. Królak Towards the proof of the cosmic censorship hypothesis , 1986 .

[141]  P. González-Díaz On the wave function of the universe , 1985 .

[142]  A. Vilenkin Quantum Creation of Universes , 1984 .

[143]  M. J. Gotay,et al.  Quantum cosmological singularities , 1983 .

[144]  William K. Wootters,et al.  Evolution without evolution: Dynamics described by stationary observables , 1983 .

[145]  R. Geroch,et al.  Singular boundaries of space-times , 1982 .

[146]  V. Belinskiǐ,et al.  A General Solution of the Einstein Equations with a Time Singularity , 1982 .

[147]  J. Isenberg,et al.  Geometric quantization and gravitational collapse , 1980 .

[148]  R. Harré Models in Science. , 1978 .

[149]  F. Tipler Singularities in conformally flat spacetimes , 1977 .

[150]  G. Ellis,et al.  Singular space-times , 1977 .

[151]  J. Thorpe Curvature invariants and space–time singularities , 1977 .

[152]  C. Isham,et al.  Quantization of a Friedmann universe filled with a scalar field , 1975 .

[153]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[154]  F. Lund Canonical Quantization of Relativistic Balls of Dust , 1973 .

[155]  B. Schmidt A new definition of singular points in general relativity , 1971 .

[156]  V. Efimov,et al.  ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES IN A THREE-BODY SYSTEM. , 1970 .

[157]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[158]  R. Geroch Local Characterization of Singularities in General Relativity , 1968 .

[159]  S. Hawking The occurrence of singularities in cosmology. ɪɪɪ. Causality and singularities , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[160]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[161]  S. Hawking The occurrence of singularities in cosmology , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[162]  W. Bean Physics and Philosophy, the Revolution in Modern Science. , 1959 .

[163]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[164]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .