Sensitivity analysis for oscillators

This paper presents an analysis for calculating sensitivities of an oscillator's periodic steady-state and perturbation projection vector to design, process, or environmental parameters. A general continuous-time formulation is described. Applications of the oscillator sensitivity analysis in design optimization and macromodeling are demonstrated through examples.

[1]  Alberto L. Sangiovanni-Vincentelli,et al.  Steady-state methods for simulating analog and microwave circuits , 1990, The Kluwer international series in engineering and computer science.

[2]  Kartikeya Mayaram,et al.  Computer-aided circuit analysis tools for RFIC simulation: algorithms, features, and limitations , 2000 .

[3]  Jaijeet S. Roychowdhury,et al.  Theory and algorithms for RF sensitivity computation , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[4]  M. Horowitz,et al.  Precise delay generation using coupled oscillators , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[5]  Paolo Maffezzoni,et al.  Efficient Multiparameter Sensitivity Computation of Amplifier Harmonic Distortion , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  J. Roychowdhury,et al.  Capturing oscillator injection locking via nonlinear phase-domain macromodels , 2004, IEEE Transactions on Microwave Theory and Techniques.

[8]  A. Hajimiri,et al.  The Design of Low Noise Oscillators , 1999 .

[9]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[10]  Paolo Maffezzoni,et al.  Unified Computation of Parameter Sensitivity and Signal-Injection Sensitivity in Nonlinear Oscillators , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[12]  John W. Bandler,et al.  A unified theory for frequency-domain simulation and sensitivity analysis of linear and nonlinear circuits , 1988 .

[13]  Alper Demir,et al.  Computing phase noise eigenfunctions directly from steady-state Jacobian matrices , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[14]  T. Aprille,et al.  A computer algorithm to determine the steady-state response of nonlinear oscillators , 1972 .

[15]  Jaijeet S. Roychowdhury,et al.  Oscillator-AC: restoring rigour to linearized small-signal analysis of oscillators , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[16]  Jaijeet S. Roychowdhury,et al.  Efficient AC Analysis of Oscillators using Least-Squares Methods , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[17]  Alper Demir Floquet theory and non‐linear perturbation analysis for oscillators with differential‐algebraic equations , 2000, Int. J. Circuit Theory Appl..

[18]  F. Gardner,et al.  Charge-Pump Phase-Lock Loops , 1980, IEEE Trans. Commun..