The Level of Nonmultiplicativity of Graphs
暂无分享,去创建一个
[1] Saul Stahl,et al. The multichromatic numbers of some Kneser graphs , 1998, Discret. Math..
[2] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[3] S. Stahl. n-Tuple colorings and associated graphs , 1976 .
[4] Xuding Zhu. A SURVEY ON HEDETNIEMI'S CONJECTURE , 1998 .
[5] E. Weisstein. Kneser's Conjecture , 2002 .
[6] Huishan Zhou. On the Nonmultiplicativity of Oriented Cycles , 1992, SIAM J. Discret. Math..
[7] Xuding Zhu,et al. Multiplicativity of Oriented Cycles , 1994, J. Comb. Theory, Ser. B.
[8] Roman Bacik. Structure of Graph Homomorphisms , 1997 .
[9] Dwight Duffus,et al. Lattices arising in categorial investigations of Hedetniemi's conjecture , 1996, Discret. Math..
[10] Stevo Todorcevic,et al. Trees and Linearly Ordered Sets , 1984 .
[11] Svatopluk Poljak,et al. On the arc-chromatic number of a digraph , 1981, J. Comb. Theory, Ser. B.
[12] András Hajnal. The chromatic number of the product of two ℵ1-chromatic graphs can be countable , 1985 .
[13] Ronald Regan,et al. Basic Set Theory , 2000 .
[14] Xuding Zhu. A simple proof of the multiplicativity of directed cycles of prime power length , 1992, Discret. Appl. Math..
[15] Pavol Hell,et al. On multiplicative graphs and the product conjecture , 1988, Comb..
[16] S. Hedetniemi. Homomorphisms of graphs and automata , 1967 .
[17] L. Lovász. Operations with structures , 1967 .
[18] Norbert Sauer,et al. The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..
[19] Xuding Zhu,et al. Multiplicativity of acyclic local tournaments , 1997, Comb..
[20] Claude Tardif,et al. Hedetniemi's Conjecture and the Retracts of a Product of Graphs , 2000, Comb..
[21] Norbert Sauer,et al. An approach to hedetniemi's conjecture , 1992, J. Graph Theory.
[22] Jaroslav Nesetril,et al. On classes of relations and graphs determined by subobjects and factorobjects , 1978, Discret. Math..