Computing the Ramsey number R(4,3,3) using abstraction and symmetry breaking
暂无分享,去创建一个
[1] S. Radziszowski. Small Ramsey Numbers , 2011 .
[2] V. Rich. Personal communication , 1989, Nature.
[3] B. McKay. nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .
[4] Marijn J. H. Heule,et al. DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs , 2014, SAT.
[5] Marijn J. H. Heule,et al. Bridging the gap between easy generation and efficient verification of unsatisfiability proofs , 2014, Softw. Test. Verification Reliab..
[6] Tanbir Ahmed. On Computation of Exact van der Waerden Numbers , 2011, Integers.
[7] Stanislaw Radziszowski,et al. On Some Open Questions for Ramsey and Folkman Numbers , 2016 .
[8] Brendan D. McKay,et al. R(4, 5) = 25 , 1995, J. Graph Theory.
[9] Towards the Exact Value of the Ramsey Number R(3, 3, 4) , 2001 .
[10] Stanislaw P. Radziszowski,et al. An Upper Bound of 62 on the Classical Ramsey Number R(3, 3, 3, 3) , 2004, Ars Comb..
[11] Konrad Piwakowski. On Ramsey number R(4, 3, 3) and triangle-free edge-chromatic graphs in three colors , 1997, Discret. Math..
[12] Michal Kouril. Computing the Van der Waerden Number W(3, 4)=293 , 2012, Integers.
[13] Peter J. Stuckey,et al. Breaking Symmetries in Graph Representation , 2013, IJCAI.
[14] Hans van Maaren,et al. A New Method to Construct Lower Bounds for Van der Waerden Numbers , 2007, Electron. J. Comb..
[15] Peter J. Stuckey,et al. Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems , 2013, J. Artif. Intell. Res..
[16] Peter J. Stuckey,et al. Constraints for symmetry breaking in graph representation , 2018, Constraints.
[17] Victor W. Marek,et al. Satisfiability and Computing van der Waerden Numbers , 2003, Electron. J. Comb..
[18] Kenneth L. McMillan,et al. Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.
[19] Patrick Prosser,et al. Diamond-free Degree Sequences , 2012, ArXiv.