Computing the Ramsey number R(4,3,3) using abstraction and symmetry breaking

The number R(4, 3, 3) is often presented as the unknown Ramsey number with the best chances of being found “soon”. Yet, its precise value has remained unknown for almost 50 years. This paper presents a methodology based on abstraction and symmetry breaking that applies to solve hard graph edge-coloring problems. The utility of this methodology is demonstrated by using it to compute the value R(4, 3, 3) = 30. Along the way it is required to first compute the previously unknown set ℛ(3,3,3;13)$\mathcal {R}(3,3,3;13)$ consisting of 78,892 Ramsey colorings.

[1]  S. Radziszowski Small Ramsey Numbers , 2011 .

[2]  V. Rich Personal communication , 1989, Nature.

[3]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[4]  Marijn J. H. Heule,et al.  DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs , 2014, SAT.

[5]  Marijn J. H. Heule,et al.  Bridging the gap between easy generation and efficient verification of unsatisfiability proofs , 2014, Softw. Test. Verification Reliab..

[6]  Tanbir Ahmed On Computation of Exact van der Waerden Numbers , 2011, Integers.

[7]  Stanislaw Radziszowski,et al.  On Some Open Questions for Ramsey and Folkman Numbers , 2016 .

[8]  Brendan D. McKay,et al.  R(4, 5) = 25 , 1995, J. Graph Theory.

[9]  Towards the Exact Value of the Ramsey Number R(3, 3, 4) , 2001 .

[10]  Stanislaw P. Radziszowski,et al.  An Upper Bound of 62 on the Classical Ramsey Number R(3, 3, 3, 3) , 2004, Ars Comb..

[11]  Konrad Piwakowski On Ramsey number R(4, 3, 3) and triangle-free edge-chromatic graphs in three colors , 1997, Discret. Math..

[12]  Michal Kouril Computing the Van der Waerden Number W(3, 4)=293 , 2012, Integers.

[13]  Peter J. Stuckey,et al.  Breaking Symmetries in Graph Representation , 2013, IJCAI.

[14]  Hans van Maaren,et al.  A New Method to Construct Lower Bounds for Van der Waerden Numbers , 2007, Electron. J. Comb..

[15]  Peter J. Stuckey,et al.  Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems , 2013, J. Artif. Intell. Res..

[16]  Peter J. Stuckey,et al.  Constraints for symmetry breaking in graph representation , 2018, Constraints.

[17]  Victor W. Marek,et al.  Satisfiability and Computing van der Waerden Numbers , 2003, Electron. J. Comb..

[18]  Kenneth L. McMillan,et al.  Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.

[19]  Patrick Prosser,et al.  Diamond-free Degree Sequences , 2012, ArXiv.