Numerical simulations of fluid pressure in the human eye

In this article we present computational results for the pressure in the human eye. Pressure computations for different flow rates of the aqueous humor, viscosity of the aqueous humor, and permeability of the trabecular meshwork are given. The fluid flow is assumed to be axisymmetric, and modeled as a coupled system of Stokes and Darcy fluid flow equations, representing the fluid flow in the anterior cavity and trabecular meshwork, respectively. Rewriting the problem in cylindrical coordinates reduces the 3-D problem to a problem in 2-D. Computations are also given for varying angles between the base of the iris and the trabecular meshwork.

[1]  Satish Kumar Numerical solution of ocular fluid dynamics , 2003 .

[2]  On the fluid flow in the anterior chamber of a human eye with slip velocity , 2005 .

[3]  Andro Mikelico,et al.  ON THE INTERFACE BOUNDARY CONDITION OF , 2000 .

[4]  J. Dewynne,et al.  Fluid flow in the anterior chamber of a human eye. , 2002, IMA journal of mathematics applied in medicine and biology.

[5]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[6]  Jyoti Kathawate Numerical solution of flow resistance in outflow pathway and intravitreal drug delivery in vitrectomised eyes , 2006 .

[7]  Shuyu Sun,et al.  Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..

[8]  Helga Kolb,et al.  Gross Anatomy of the Eye , 2007 .

[9]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[10]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[11]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[13]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[14]  Hengguang Li,et al.  Finite element analysis for the axisymmetric Laplace operator on polygonal domains , 2011, J. Comput. Appl. Math..

[15]  V. Ervin Approximation of Axisymmetric Darcy Flow , 2012 .

[16]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[17]  Franck Assous,et al.  Theoretical tools to solve the axisymmetric Maxwell equations , 2002 .

[18]  A. D. Fitt,et al.  Fluid Mechanics of the Human Eye: Aqueous Humour Flow in The Anterior Chamber , 2006, Bulletin of mathematical biology.

[19]  V. Ervin Approximation of coupled Stokes–Darcy flow in an axisymmetric domain , 2013 .

[20]  W. S. Snyder,et al.  Report of the task group on reference man , 1979, Annals of the ICRP.

[21]  N. Brown,et al.  Dimensions of the human eye relevant to radiation protection. , 1975, Physics in medicine and biology.

[22]  Ram Avtar,et al.  Modelling aqueous humor outflow through trabecular meshwork , 2007, Appl. Math. Comput..

[23]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[24]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[25]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[26]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[27]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[28]  G. Krieglstein,et al.  Morphological variability of the trabecular meshwork in glaucoma patients: implications for non-perforating glaucoma surgery , 2000, The British journal of ophthalmology.

[29]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[30]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[31]  Ram Avtar,et al.  Modelling the flow of aqueous humor in anterior chamber of the eye , 2006, Appl. Math. Comput..