Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy

[1]  Edwin J. Weeber,et al.  SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity , 2003, Neuron.

[2]  J. Sahel,et al.  Progressive retinal degeneration and dysfunction in R6 Huntington's disease mice. , 2002, Human molecular genetics.

[3]  K. Lindenberg,et al.  Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. , 2002, Molecular cell.

[4]  C. Duyckaerts,et al.  Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. , 2002, Brain : a journal of neurology.

[5]  C. Ware,et al.  Polyglutamine-Expanded Ataxin-7 Promotes Non-Cell-Autonomous Purkinje Cell Degeneration and Displays Proteolytic Cleavage in Ataxic Transgenic Mice , 2002, The Journal of Neuroscience.

[6]  S. Tsuji,et al.  Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. , 2002, Archives of neurology.

[7]  R. Sinke,et al.  Spinocerebellar ataxias in the Netherlands: Prevalence and age at onset variance analysis , 2002, Neurology.

[8]  L. Forsgren,et al.  Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals , 2002, Acta Neuropathologica.

[9]  L. Forsgren,et al.  Cloning and expression analysis of the murine homolog of the spinocerebellar ataxia type 7 (SCA7) gene. , 2002, Gene.

[10]  B. Jeon,et al.  Molecular analysis of Spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6, and SCA7. , 2001, Molecules and cells.

[11]  H. Paulson,et al.  The Role of Protein Composition in Specifying Nuclear Inclusion Formation in Polyglutamine Disease* , 2001, The Journal of Biological Chemistry.

[12]  C. van Broeckhoven,et al.  Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. , 2001, Human molecular genetics.

[13]  Z. Qin,et al.  Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  C. Duyckaerts,et al.  Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain: proteins recruited in inclusions and activation of caspase-3. , 2001, Human molecular genetics.

[15]  R. Giugliani,et al.  A survey of spinocerebellar ataxia in South Brazil – 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease–causing mutations , 2001, Journal of Neurology.

[16]  R. Sinke,et al.  Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype , 2001, Journal of Neurology.

[17]  C. Ware,et al.  Polyglutamine-Expanded Ataxin-7 Antagonizes CRX Function and Induces Cone-Rod Dystrophy in a Mouse Model of SCA7 , 2001, Neuron.

[18]  R. Wetzel,et al.  Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. , 2001, Journal of molecular biology.

[19]  G. Yvert,et al.  SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. , 2001, Human molecular genetics.

[20]  Bing-Wen Soong,et al.  Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. , 2001 .

[21]  C. Duyckaerts,et al.  Ataxin-7 interacts with a Cbl-associated protein that it recruits into neuronal intranuclear inclusions. , 2001, Human molecular genetics.

[22]  Ying-Hui Fu,et al.  Ataxin-7 expression analysis in controls and spinocerebellar ataxia type 7 patients , 2001, Neurogenetics.

[23]  E. Storey,et al.  Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. , 2000, American journal of medical genetics.

[24]  A. Tobin,et al.  Huntington's disease: the challenge for cell biologists. , 2000, Trends in cell biology.

[25]  Y. Agid,et al.  Distribution of ataxin-7 in normal human brain and retina. , 2000, Brain : a journal of neurology.

[26]  L. Forsgren,et al.  Evidence for a common Spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia , 2000, European Journal of Human Genetics.

[27]  James F. Gusella,et al.  Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease , 2000, Nature Reviews Neuroscience.

[28]  J. Sahel,et al.  Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. , 2000, Human molecular genetics.

[29]  He Li,et al.  Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity , 2000, Nature Genetics.

[30]  G. Caruso,et al.  Relative Frequencies of CAG Expansions in Spinocerebellar Ataxia and Dentatorubropallidoluysian Atrophy in 116 Italian Families , 2000, European Neurology.

[31]  G. Yvert,et al.  Expression Analysis of Ataxin‐7 mRNA and Protein in Human Brain: Evidence for a Widespread Distribution and Focal Protein Accumulation , 2000, Brain pathology.

[32]  A. Mushegian,et al.  Conserved phosphoprotein interaction motif is functionally interchangeable between ataxin-7 and arrestins. , 2000, Biochemistry.

[33]  H. Paulson Toward an Understanding of Polyglutamine Neurodegeneration , 2000, Brain pathology.

[34]  C. van Broeckhoven,et al.  Identification and localization of ataxin-7 in brain and retina of a patient with cerebellar ataxia type II using anti-peptide antibody. , 1999, Brain research. Molecular brain research.

[35]  T. Ashizawa,et al.  Very large (CAG)(n) DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. , 1999, Human molecular genetics.

[36]  Harry T Orr,et al.  Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice , 1999, Neuron.

[37]  C. Broeckhoven,et al.  Spinocerebellar ataxia type 7 (SCA7) – correlations between phenotype and genotype in one large Belgian family , 1999, Journal of the Neurological Sciences.

[38]  L. Orsi,et al.  Definition of the smallest pathological CAG expansion in SCA7 , 1999, Clinical genetics.

[39]  D. Borchelt,et al.  Nuclear Accumulation of Truncated Atrophin-1 Fragments in a Transgenic Mouse Model of DRPLA , 1999, Neuron.

[40]  H. Orr,et al.  Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. , 1999, Human molecular genetics.

[41]  C. Ross,et al.  Nuclear Targeting of Mutant Huntingtin Increases Toxicity , 1999, Molecular and Cellular Neuroscience.

[42]  A. Brice,et al.  Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. , 1999, American journal of human genetics.

[43]  D. Monckton,et al.  Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. , 1999, Human molecular genetics.

[44]  M. Gratacós,et al.  Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases , 1999, Human Genetics.

[45]  K. Blindauer,et al.  Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families , 1998, Neurology.

[46]  Harry T Orr,et al.  Ataxin-1 Nuclear Localization and Aggregation Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice , 1998, Cell.

[47]  Steven Finkbeiner,et al.  Huntingtin Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the Formation of Intranuclear Inclusions , 1998, Cell.

[48]  H. Zoghbi,et al.  Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype , 1998, Neurology.

[49]  H. Zoghbi,et al.  Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. , 1998, American journal of human genetics.

[50]  M. Ruberg,et al.  De novo expansion of intermediate alleles in spinocerebellar ataxia 7. , 1998, Human molecular genetics.

[51]  A Dürr,et al.  Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. , 1998, Human molecular genetics.

[52]  Dale E. Bredesen,et al.  Caspase Cleavage of Gene Products Associated with Triplet Expansion Disorders Generates Truncated Fragments Containing the Polyglutamine Tract* , 1998, The Journal of Biological Chemistry.

[53]  S. Pulst,et al.  Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. , 1998, Human molecular genetics.

[54]  A. Brice,et al.  Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. , 1998, Human molecular genetics.

[55]  Y. Agid,et al.  Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). , 1998, Human molecular genetics.

[56]  J. Theuns,et al.  Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. , 1998, Human molecular genetics.

[57]  Y. Agid,et al.  Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion , 1997, Nature Genetics.

[58]  Mark Turmaine,et al.  Formation of Neuronal Intranuclear Inclusions Underlies the Neurological Dysfunction in Mice Transgenic for the HD Mutation , 1997, Cell.

[59]  C. Broeckhoven,et al.  Refinement of the locus for autosomal dominant cerebellar ataxia type II to chromosome 3p21.1–14.1 , 1997, Human Genetics.

[60]  Y. Agid,et al.  Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. , 1996, Human molecular genetics.

[61]  J. Weissenbach,et al.  The gene for autosomal dominant cerebellar ataxia type II is located in a 5-cM region in 3p12-p13: genetic and physical mapping of the SCA7 locus. , 1996, American journal of human genetics.

[62]  H. Ehrsson,et al.  An expanded CAG repeat sequence in spinocerebellar ataxia type 7. , 1996, Genome research.

[63]  Y. Agid,et al.  Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias , 1995, Nature.

[64]  C A Ross,et al.  When more is less: Pathogenesis of glutamine repeat neurodegenerative diseases , 1995, Neuron.

[65]  L. Forsgren,et al.  Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1. , 1995, Human molecular genetics.

[66]  M. Leppert,et al.  Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p , 1995, Nature Genetics.

[67]  J. Weissenbach,et al.  The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1 , 1995, Nature Genetics.

[68]  K. Fischbeck,et al.  Trinucleotide repeat expansion in neurological disease , 1994, Annals of neurology.

[69]  K. Digre,et al.  Autosomal dominant cerebellar ataxia with retinal degeneration , 1994, Neurology.

[70]  M. Sanders,et al.  Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. , 1994, Brain : a journal of neurology.

[71]  Y. Agid,et al.  Autosomal‐dominant cerebellar ataxia with retinal degeneration (ADCA type II) is genetically different from ADCA type I , 1994, Annals of neurology.

[72]  A. Harding The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the 'the Drew family of Walworth'. , 1982, Brain : a journal of neurology.

[73]  B. Konigsmark,et al.  THE OLIVOPONTOCEREBELLAR ATROPHIES: A REVIEW , 1970, Medicine.

[74]  K. Au,et al.  Spinocerebellar ataxia type 6. , 2005, Hong Kong medical journal = Xianggang yi xue za zhi.

[75]  C. Broeckhoven,et al.  On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family , 2004, Acta Neuropathologica.

[76]  Ying-Hui Fu,et al.  A novel central nervous system-enriched spinocerebellar ataxia type 7 gene product. , 2003, Archives of neurology.

[77]  C. Ware,et al.  Genomic context drives SCA7 CAG repeat instability, while expressed SCA7 cDNAs are intergenerationally and somatically stable in transgenic mice. , 2003, Human molecular genetics.

[78]  F. Baas,et al.  Autosomal dominant cerebellar ataxia with retinal degeneration ( ADCA II ) : clinical and neuropathological findings in two pedigrees and genetic linkage to 3 p 1 2p 2 1 . 1 , 2003 .

[79]  H. Zoghbi,et al.  Glutamine repeats and neurodegeneration. , 2000, Annual review of neuroscience.

[80]  C. van Broeckhoven,et al.  Genomic organisation of the spinocerebellar ataxia type 7 (SCA7) gene responsible for autosomal dominant cerebellar ataxia with retinal degeneration , 1999, Human Genetics.

[81]  T. Bird,et al.  Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA , 1998, Nature Genetics.