Quantum annealing: The fastest route to quantum computation?

In this review we consider the performance of the quantum adiabatic algorithm for the solution of decision problems. We divide the possible failure mechanisms into two sets: small gaps due to quantum phase transitions and small gaps due to avoided crossings inside a phase. We argue that the thermodynamic order of the phase transitions is not predictive of the scaling of the gap with the system size. On the contrary, we also argue that, if the phase surrounding the problem Hamiltonian is a Many-Body Localized (MBL) phase, the gaps are going to be typically exponentially small and that this follows naturally from the existence of local integrals of motion in the MBL phase.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[3]  P. Anderson,et al.  A selfconsistent theory of localization , 1973 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  P. Anderson,et al.  Interactions and the Anderson transition , 1980 .

[6]  R. Feynman Simulating physics with computers , 1999 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[10]  Fisher,et al.  Critical behavior of random transverse-field Ising spin chains. , 1995, Physical review. B, Condensed matter.

[11]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[12]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[13]  Rémi Monasson,et al.  THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .

[14]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[15]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[16]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[17]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[18]  Ben Reichardt,et al.  The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.

[19]  Quantum adiabatic optimization and combinatorial landscapes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Edward Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .

[21]  Quantum Adiabatic Evolution Algorithm and Quantum Phase Transition in 3-Satisfiability Problem , 2006, cond-mat/0602257.

[22]  Martin Horvat,et al.  Exponential complexity of an adiabatic algorithm for an NP-complete problem , 2006 .

[23]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[24]  Sergey Bravyi,et al.  Efficient algorithm for a quantum analogue of 2-SAT , 2006, quant-ph/0602108.

[25]  Michele Mosca,et al.  Limitations of some simple adiabatic quantum algorithms , 2007 .

[26]  F. Krzakala,et al.  Simple glass models and their quantum annealing. , 2008, Physical Review Letters.

[27]  Seth Lloyd,et al.  Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation , 2008, SIAM Rev..

[28]  T. Prosen,et al.  Many-body localization in the Heisenberg XXZ magnet in a random field , 2007, 0706.2539.

[29]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[30]  S. Sondhi,et al.  Cavity method for quantum spin glasses on the Bethe lattice , 2007, 0706.4391.

[31]  Sergey Knysh,et al.  Statistical mechanics of the quantum K -satisfiability problem. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  V. Choi,et al.  First-order quantum phase transition in adiabatic quantum computation , 2009, 0904.1387.

[33]  D. Huse,et al.  Energy transport in disordered classical spin chains , 2009, 0905.4112.

[34]  Jérémie Roland,et al.  Anderson localization casts clouds over adiabatic quantum optimization , 2009, ArXiv.

[35]  Christopher R. Laumann,et al.  On product, generic and random generic quantum satisfiability , 2009, ArXiv.

[36]  Masayuki Ohzeki,et al.  Quantum annealing: An introduction and new developments , 2010, 1006.1696.

[37]  Roderich Moessner,et al.  Random quantum satisfiabiilty , 2010 .

[38]  Vadim N. Smelyanskiy,et al.  On the relevance of avoided crossings away from quantum critical point to the complexity of quantum adiabatic algorithm , 2010, ArXiv.

[39]  D. Huse,et al.  Many-body localization phase transition , 2010, 1010.1992.

[40]  Guilhem Semerjian,et al.  First-order transitions and the performance of quantum algorithms in random optimization problems , 2009, Physical review letters.

[41]  T. Jorg,et al.  Energy gaps in quantum first-order mean-field–like transitions: The problems that quantum annealing cannot solve , 2009, 0912.4865.

[42]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[43]  F. Zamponi,et al.  Solvable model of quantum random optimization problems. , 2010, Physical review letters.

[44]  A. Young,et al.  First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.

[45]  Edward Farhi,et al.  Unstructured randomness, small gaps and localization , 2010, Quantum Inf. Comput..

[46]  Edward Farhi,et al.  Quantum adiabatic algorithms, small gaps, and different paths , 2009, Quantum Inf. Comput..

[47]  Andrea De Luca,et al.  Structure of typical states of a disordered Richardson model and many-body localization , 2011 .

[48]  R. Moessner,et al.  Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. , 2012, Physical review letters.

[49]  V. Bapst,et al.  On quantum mean-field models and their quantum annealing , 2012, 1203.6003.

[50]  Joel E Moore,et al.  Unbounded growth of entanglement in models of many-body localization. , 2012, Physical review letters.

[51]  P. Shor,et al.  Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs , 2012, 1208.3757.

[52]  Guilhem Semerjian,et al.  The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective , 2012, ArXiv.

[53]  David A. Huse,et al.  Localization-protected quantum order , 2013, 1304.1158.

[54]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[55]  Maksym Serbyn,et al.  Universal slow growth of entanglement in interacting strongly disordered systems. , 2013, Physical review letters.

[56]  Z Papić,et al.  Local conservation laws and the structure of the many-body localized states. , 2013, Physical review letters.

[57]  R. Moessner,et al.  Approximating random quantum optimization problems , 2013, 1304.2837.

[58]  A. Scardicchio,et al.  Ergodicity breaking in a model showing many-body localization , 2012, 1206.2342.

[59]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[60]  H. Nishimori,et al.  Energy Gap at First-Order Quantum Phase Transitions: An Anomalous Case , 2013, 1306.2142.

[61]  N. Yao,et al.  Many-body localization in dipolar systems. , 2013, Physical review letters.

[62]  A. Scardicchio,et al.  Many-body mobility edge in a mean-field quantum spin glass. , 2014, Physical review letters.

[63]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[64]  D. Huse,et al.  Phenomenology of fully many-body-localized systems , 2013, 1408.4297.

[65]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[66]  Rahul Nandkishore,et al.  Nonlocal adiabatic response of a localized system to local manipulations , 2014, Nature Physics.

[67]  A. Scardicchio,et al.  Integrals of motion in the many-body localized phase , 2014, 1406.2175.

[68]  John Z. Imbrie,et al.  On Many-Body Localization for Quantum Spin Chains , 2014, 1403.7837.