Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography.

Background To estimate choriocapillaris flow deficits beyond normal intercapillary distance with swept source optical coherence tomography angiography (SS-OCTA). Methods Subjects were enrolled and repeated SS-OCTA scans were performed using the 3 mm × 3 mm scan pattern. Blood flow was identified using the complex optical microangiography (OMAGc) algorithm. The choriocapillaris (CC) was defined as a 20 µm slab of the flow volume beneath the outer boundary of Bruch's membrane (BM) and was compensated with the corresponding structural image for flow deficits measurement. Flow deficits were segmented based on one mean standard deviation from a normal database. A histogram based thresholding method was developed to remove small flow deficits that were determined by examining intercapillary spacing within normal CC networks. A registration method based on affine and B-spline transformation was utilized for the CC angiogram averaging. Four repeated scans were averaged, and results were compared with and without removal of small flow deficits after averaging a different number of scans (N=1, group 1; N=2, group 2; N=3, group 3 and N=4, group 4). Results Seven normal subjects were enrolled. Intercapillary distance was found to be 24 µm for the CC networks under OCTA, which was used as the threshold to exclude small flow deficits for CC quantification. After averaging, significant reduction in background noise and improvement in continuity of blood vessel networks were observed both on retinal and choriocapillaris angiograms. Flow deficit percentages of the choriocapillaris were significantly reduced with averaging (group 1 vs. group 2: P<0.0001; group 2 vs. group 3: P<0.001; group 3 vs. group 4: P<0.001). The flow deficit percentages were also significantly reduced after removing the small flow deficits (≤24 µm in diameter) in all groups (P<0.01). A statistically significant difference was found after removing small flow deficits (≤24 µm in diameter) between group 1 and group 2 (P<0.001), between group 2 and group 3 (P<0.05), and between group 3 and group 4 (P<0.05). However, the significance was decreased compared to that without small flow deficits removal. Conclusions A method was developed to improve the robust estimation of choriocapillaris flow deficits by removing the small flow deficits corresponding to normal intercapillary spacing. After the removal of small flow deficits, fewer repeats were required for image averaging to achieve comparable accuracy of flow deficit measurements with SS-OCTA.

[1]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[2]  Ruikang K. Wang,et al.  Comparison of Neovascular Lesion Area Measurements From Different Swept-Source OCT Angiographic Scan Patterns in Age-Related Macular Degeneration , 2017, Investigative ophthalmology & visual science.

[3]  Ruikang K. Wang,et al.  Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms , 2017, Investigative ophthalmology & visual science.

[4]  Wolfgang Drexler,et al.  Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics. , 2017, Biomedical optics express.

[5]  Ruikang K. Wang,et al.  Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications , 2017, Progress in Retinal and Eye Research.

[6]  R. Spaide Optical Coherence Tomography Angiography Signs of Vascular Abnormalization With Antiangiogenic Therapy for Choroidal Neovascularization. , 2015, American journal of ophthalmology.

[7]  J. Duker,et al.  Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography , 2013, PloS one.

[8]  Ravi S. Jonnal,et al.  Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system , 2017, BiOS.

[9]  Sophie Kubach,et al.  Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization , 2017, Investigative ophthalmology & visual science.

[10]  Dao-Yi Yu,et al.  Quantitative Comparison of Retinal Capillary Images Derived By Speckle Variance Optical Coherence Tomography With Histology. , 2015, Investigative ophthalmology & visual science.

[11]  Aki Kato,et al.  ENLARGEMENT OF FOVEAL AVASCULAR ZONE IN DIABETIC EYES EVALUATED BY EN FACE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[12]  Ruikang K. Wang,et al.  User-guided segmentation for volumetric retinal optical coherence tomography images. , 2014, Journal of biomedical optics.

[13]  R. Spaide Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. , 2016, American journal of ophthalmology.

[14]  Ruikang K. Wang,et al.  Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration , 2017, Journal of biomedical optics.

[15]  Ruikang K. Wang,et al.  Original articleOptical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration , 2016 .

[16]  K. Rakušan,et al.  Lognormal distribution of intercapillary distance in normal and hypertrophic rat heart as estimated by the method of concentric circles: its effect on tissue oxygenation , 1981, Pflügers Archiv.

[17]  Erika Phillips,et al.  Visualization of Radial Peripapillary Capillaries Using Optical Coherence Tomography Angiography: The Effect of Image Averaging , 2017, PloS one.

[18]  Ruikang K. Wang,et al.  Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. , 2015, Biomedical optics express.

[19]  Ruikang K. Wang,et al.  High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. , 2010, Journal of biomedical optics.

[20]  Akihito Uji,et al.  Quantitative Features of the Choriocapillaris in Healthy Individuals Using Swept-Source Optical Coherence Tomography Angiography. , 2017, Ophthalmic surgery, lasers & imaging retina.

[21]  Ruikang K. Wang,et al.  Association between OCT-based microangiography perfusion indices and diabetic retinopathy severity , 2016, British Journal of Ophthalmology.

[22]  H. Awwad,et al.  Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. , 1986, International journal of radiation oncology, biology, physics.

[23]  Ruikang K. Wang,et al.  SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF NEOVASCULAR MACULAR TELANGIECTASIA TYPE 2 , 2015, Retina.

[24]  J. Gross,et al.  Mathematical analysis of oxygen transport to tissue , 1980 .

[25]  Eric M. Moult,et al.  Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. , 2015, Ophthalmology.

[26]  Ruikang K. Wang,et al.  Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography , 2017, Graefe's Archive for Clinical and Experimental Ophthalmology.

[27]  S. Sadda,et al.  Impact of Multiple En Face Image Averaging on Quantitative Assessment from Optical Coherence Tomography Angiography Images. , 2017, Ophthalmology.

[28]  Brian T. Soetikno,et al.  Choriocapillaris Nonperfusion is Associated With Poor Visual Acuity in Eyes With Reticular Pseudodrusen. , 2017, American journal of ophthalmology.

[29]  Kazuhiro Kurokawa,et al.  Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]. , 2017, Biomedical optics express.

[30]  Luis de Sisternes,et al.  A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography , 2018, Investigative ophthalmology & visual science.