Some links between extremum spanning forests, watersheds and min-cuts

Minimum cuts, extremum spanning forests and watersheds have been used as the basis for powerful image segmentation procedures. In this paper, we present some results about the links which exist between these different approaches. Especially, we show that extremum spanning forests are particular cases of watersheds from arbitrary markers and that min-cuts coincide with extremum spanning forests for some particular weight functions.

[1]  Fernand Meyer,et al.  Minimum Spanning Forests for Morphological Segmentation , 1994, ISMM.

[2]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[4]  Gilles Bertrand,et al.  Watershed cuts , 2007, ISMM.

[5]  Gilles Bertrand,et al.  Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[7]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[8]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[9]  Michel Couprie,et al.  Some links between min-cuts, optimal spanning forests and watersheds , 2007, ISMM.

[10]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[11]  Gilles Bertrand,et al.  Enhanced computation method of topological smoothing on shared memory parallel machines , 2005, Journal of Mathematical Imaging and Vision.

[12]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Laurent Najman,et al.  Morphologie Mathématique 1 : approches déterministes , 2008 .

[14]  Pierre Machart Morphological Segmentation , 2009 .

[15]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[16]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[17]  Jean Cea,et al.  Optimization - Theory and Algorithms , 1978 .

[18]  Olga Veksler,et al.  A New Algorithm for Energy Minimization with Discontinuities , 1999, EMMCVPR.

[19]  Mihalis Yannakakis,et al.  The complexity of multiway cuts (extended abstract) , 1992, STOC '92.

[20]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[21]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[22]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..