Small Sample-Based Fatigue Reliability Analysis Using Non-Intrusive Polynomial Chaos

Based on small sample of fatigue test data, a new method to obtain <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> curve for fatigue reliability analysis using non-intrusive polynomial chaos (NIPC) is proposed to lower test cost. Parameter <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> in Basquin <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> model is regarded as random variable. Samples of <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> are calculated through inverse analysis based on small sample of fatigue test life. Then non-intrusive polynomial chaos expansions of <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> with respect to fatigue life are constituted under different stress levels. Statistics of <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> can be calculated directly by polynomial coefficients. A fast large-sample of <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> can be obtained based on NIPC and probability distribution type can be determined through EDF test. Then samples of <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> under the stress levels can be obtained and substituted into <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> model to calculate corresponding fatigue life samples. The fatigue life under different reliabilities are calculated for fitting <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> curve. Fatigue test of Al 2024-T3 plate with hole is performed. <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> curves are obtained by proposed method and compared with that obtained by linear regression based on least square method. Almost all relative errors are less than 5%, which show that the proposed method can predict <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> curve effectively.

[1]  O. Basquin The exponential law of endurance tests , 1910 .

[2]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[3]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[4]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[5]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[6]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[7]  R. A. Shenoi,et al.  A practical randomization approach of deterministic equation to determine probabilistic fatigue and fracture behaviours based on small experimental data sets , 2007 .

[8]  R. M. Pidaparti,et al.  Life Prediction of Aircraft Aluminum Subjected to Pitting Corrosion Under Fatigue Conditions , 2009 .

[9]  Aditi Chattopadhyay,et al.  Fatigue damage prediction in metallic materials based on multiscale modeling , 2009 .

[10]  Shigeo Shimizu,et al.  New data analysis of probabilistic stress-life (P–S–N) curve and its application for structural materials , 2010 .

[11]  R. Walters,et al.  Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics , 2010 .

[12]  Liyang Xie Principle of Sample Polymerization and Method of P-S-N Curve Fitting , 2013 .

[13]  K. Balaji Rao,et al.  Probabilistic fatigue life analysis of welded steel plate railway bridge girders using S–N curve approach , 2013 .

[14]  Shengkui Zeng,et al.  Improved non-intrusive polynomial chaos for reliability analysis under hybrid uncertainty , 2013, 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE).

[15]  Liyang Xie,et al.  Backwards statistical inference method for P–S–N curve fitting with small-sample experiment data , 2014 .

[16]  Gilles Celeux,et al.  Probabilistic modeling of S–N curves , 2014 .

[17]  Takao Okada,et al.  Fatigue Crack Growth of Friction-Stir-Welded Aluminum Alloy , 2017 .

[18]  Bo Liu,et al.  A new method for obtaining P-S-N curves under the condition of small sample , 2017 .

[19]  Wei Dai,et al.  A Novel RLS-KS Method for Parameter Estimation in Particle Filtering-Based Fatigue Crack Growth Prognostics , 2019, IEEE Access.

[20]  Zhili Sun,et al.  A New Kriging-Based Learning Function for Reliability Analysis and Its Application to Fatigue Crack Reliability , 2019, IEEE Access.

[21]  Chengrui Liu,et al.  Reliability Analysis for Strain-Based Fatigue Incorporating Dispersity Variation , 2019, IEEE Access.

[22]  Hui Ma,et al.  A Bayesian Inference Method and its Application in Fatigue Crack Life Prediction , 2019, IEEE Access.