The loci of oscillatory visual-object priming: a combined electroencephalographic and reaction-time study.

[1]  H. Müller,et al.  Evidence for 40-Hz oscillatory short-term visual memory revealed by human reaction-time measurements. , 2000, Journal of experimental psychology. Learning, memory, and cognition.

[2]  E. Donchin,et al.  A componential analysis of the ERP elicited by novel events using a dense electrode array. , 1999, Psychophysiology.

[3]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[4]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[5]  A. Haig,et al.  Peak gamma latency correlated with reaction time in a conventional oddball paradigm , 1999, Clinical Neurophysiology.

[6]  H. Müller,et al.  Synchronous Information Presented in 40-HZ Flicker Enhances Visual Feature Binding , 1998 .

[7]  E. Donchin,et al.  Using a forest of electrodes to clear a garden path: Identifying the ERP components elicited by disambiguating words , 1998 .

[8]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[9]  Matthias M. Müller,et al.  Visually induced gamma‐band responses to coherent and incoherent motion: a replication study , 1997, Neuroreport.

[10]  D. Snodderly,et al.  A Dissociation Between Brain Activity and Perception: Chromatically Opponent Cortical Neurons Signal Chromatic Flicker that is not Perceived , 1997, Vision Research.

[11]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[12]  K. Böcker,et al.  Brain and behavior : Past, present, and future , 1997 .

[13]  J. Pernier,et al.  Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[15]  E Başar,et al.  Frontal gamma-band enhancement during multistable visual perception. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[16]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[17]  P. Churchland,et al.  The Mind-Brain Continuum: Sensory Processes , 1996 .

[18]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[19]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R Shapley,et al.  Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Pernier,et al.  Gamma‐range Activity Evoked by Coherent Visual Stimuli in Humans , 1995, The European journal of neuroscience.

[22]  S. Sorbi,et al.  ApoE genotype and familial Alzheimer's disease: a possible influence on age of onset in APP717 Val → Ile mutated families , 1995, Neuroscience Letters.

[23]  T. Elbert,et al.  Visual stimulation alters local 40-Hz responses in humans: an EEG-study , 1995, Neuroscience Letters.

[24]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[25]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[26]  V. Cox,et al.  Habenula lesions attenuate lateral hypothalamic analgesia in the formalin test. , 1993, Neuroreport.

[27]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[28]  P. Kellman,et al.  Strength of visual interpolation depends on the ratio of physically specified to total edge length , 1992, Perception & psychophysics.

[29]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[30]  E. Basar,et al.  A compound P300-40 Hz response of the cat hippocampus. , 1991, The International journal of neuroscience.

[31]  N. Logothetis,et al.  Neuronal correlates of subjective visual perception. , 1989, Science.

[32]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[33]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[34]  R. Homan,et al.  Cerebral location of international 10-20 system electrode placement. , 1987, Electroencephalography and clinical neurophysiology.

[35]  Gary Finley,et al.  A high-speed point plotter for vision research , 1985, Vision Research.

[36]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[37]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[39]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[40]  M. Coltheart,et al.  Iconic memory and visible persistence , 1980, Perception & psychophysics.

[41]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[42]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[43]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.