Distributed order calculus and equations of ultraslow diffusion

Abstract We consider equations of the form ( D ( μ ) u ) ( t , x ) − Δ u ( t , x ) = f ( t , x ) , t > 0 , x ∈ R n , where D ( μ ) is a distributed order derivative, that is D ( μ ) φ ( t ) = ∫ 0 1 ( D ( α ) φ ) ( t ) μ ( α ) d α , D ( α ) is the Caputo–Dzhrbashyan fractional derivative of order α, μ is a positive weight function. The above equation is used in physical literature for modeling diffusion with a logarithmic growth of the mean square displacement. In this work we develop a mathematical theory of such equations, study the derivatives and integrals of distributed order.

[1]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[4]  J. Nohel,et al.  Abstract Linear and Nonlinear Volterra Equations Preserving Positivity , 1979 .

[5]  F. Olver Asymptotics and Special Functions , 1974 .

[6]  William Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 2 , 1967 .

[7]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[8]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[9]  I. M. Sokolov,et al.  Fractional Fokker-Planck equation for ultraslow kinetics , 2003 .

[10]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[11]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[12]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[13]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Meerschaert,et al.  Stochastic model for ultraslow diffusion , 2006 .

[15]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[16]  V. A. Ditkin,et al.  Integral transforms and operational calculus , 1965 .

[17]  Rudolf Gorenflo,et al.  Cauchy and Nonlocal Multi-Point Problems for Distributed Order Pseudo-Differential Equations, Part One , 2005 .

[18]  Stefan Samko,et al.  Sonine Integral Equations of the First Kind in L p (0;b). , 2003 .

[19]  Francesco Mainardi,et al.  Simply and multiply scaled diffusion limits for continuous time random walks , 2005 .

[20]  Stefan Samko,et al.  INTEGRAL EQUATIONS OF THE FIRST KIND OF SONINE TYPE , 2003 .

[21]  M. Naber DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION , 2003, math-ph/0311047.

[22]  E. M. Landis,et al.  Second Order Equations of Elliptic and Parabolic Type , 1997 .

[23]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[24]  R. Gorenflo,et al.  FRACTIONAL RELAXATION OF DISTRIBUTED ORDER , 2006 .

[25]  A. Kochubei,et al.  Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type , 2004 .

[26]  I. M. Sokolov,et al.  Distributed-Order Fractional Kinetics , 2004 .

[27]  J. Clunie Analytic Functions , 1962, Nature.

[28]  Anatoly N. Kochubei,et al.  Cauchy problem for fractional diffusion equations , 2003 .

[29]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[30]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[31]  Michele Caputo,et al.  Mean fractional-order-derivatives differential equations and filters , 1995, ANNALI DELL UNIVERSITA DI FERRARA.

[32]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Yu. A. Dubinskii The algebra of pseudodifferential operators with analytic symbols and its applications to mathematical physics , 1982 .

[34]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[35]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[36]  S. D. Eidelman,et al.  Cauchy problem for evolution equations of a fractional order , 2004 .