A machine learning approach to taking EEG-based brain-computer interfaces out of the lab

5

[1]  Owen Falzon,et al.  The analytic common spatial patterns method for EEG-based BCI data , 2012, Journal of neural engineering.

[2]  Gernot R. Müller-Putz,et al.  Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier , 2016, Biomedizinische Technik. Biomedical engineering.

[3]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[4]  Manuel Schabus,et al.  Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[5]  Arnaud Delorme,et al.  Frontal midline EEG dynamics during working memory , 2005, NeuroImage.

[6]  Shihui Han,et al.  Neural oscillations involved in self-referential processing , 2010, NeuroImage.

[7]  Klaus-Robert Müller,et al.  Neurophysiological predictor of SMR-based BCI performance , 2010, NeuroImage.

[8]  Klaus-Robert Müller,et al.  Ensembles of adaptive spatial filters increase BCI performance: an online evaluation , 2016, Journal of neural engineering.

[9]  Konstantinos N. Plataniotis,et al.  Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems , 2016, IEEE Transactions on Biomedical Engineering.

[10]  Bernhard Schölkopf,et al.  Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS , 2016, Journal of neural engineering.

[11]  Michael S. Lazar,et al.  Spatial patterns underlying population differences in the background EEG , 2005, Brain Topography.

[12]  K. Priftis,et al.  Brain–computer interfaces in amyotrophic lateral sclerosis: A metanalysis , 2015, Clinical Neurophysiology.

[13]  Wolfgang Klimesch,et al.  Individual differences in brain dynamics: important implications for the calculation of event-related band power , 1998, Biological Cybernetics.

[14]  Thomas R Knösche,et al.  On the time resolution of event-related desynchronization: a simulation study , 2002, Clinical Neurophysiology.

[15]  Anna M. Bianchi,et al.  ERP and adaptive autoregressive identification with spectral power decomposition to study rapid auditory processing in infants , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[16]  Ana Loboda,et al.  Discrimination of EEG-Based Motor Imagery Tasks by Means of a Simple Phase Information Method , 2014 .

[17]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[18]  R Leeb,et al.  Context-aware adaptive spelling in motor imagery BCI , 2016, Journal of neural engineering.

[19]  Seong-Whan Lee,et al.  Design of an asynchronous brain-computer interface for control of a virtual Avatar , 2016, 2016 4th International Winter Conference on Brain-Computer Interface (BCI).

[20]  A. Cichocki,et al.  Segmentation and tracking of the electro-encephalogram signal using an adaptive recursive bandpass filter , 2001, Medical and Biological Engineering and Computing.

[21]  M. Osaka,et al.  Peak alpha frequency of EEG during a mental task: task difficulty and hemispheric differences. , 1984, Psychophysiology.

[22]  B. Hjorth An on-line transformation of EEG scalp potentials into orthogonal source derivations. , 1975, Electroencephalography and clinical neurophysiology.

[23]  H. Aurlien,et al.  EEG background activity described by a large computerized database , 2004, Clinical Neurophysiology.

[24]  Gernot R. Müller-Putz,et al.  A co-adaptive sensory motor rhythms Brain-Computer Interface based on common spatial patterns and Random Forest , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[25]  J. Cedarbaum,et al.  The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function , 1999, Journal of the Neurological Sciences.

[26]  P Clochon,et al.  A new method for quantifying EEG event-related desynchronization:amplitude envelope analysis. , 1996, Electroencephalography and clinical neurophysiology.

[27]  G. Pfurtscheller,et al.  Motor imagery activates primary sensorimotor area in humans , 1997, Neuroscience Letters.

[28]  G. Buzsáki Rhythms of the brain , 2006 .

[29]  Hans-Peter Landolt,et al.  The Functional Val158Met Polymorphism of COMT Predicts Interindividual Differences in Brain α Oscillations in Young Men , 2009, The Journal of Neuroscience.

[30]  Clemens Brunner,et al.  Online Control of a Brain-Computer Interface Using Phase Synchronization , 2006, IEEE Transactions on Biomedical Engineering.

[31]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[32]  Christian Jutten,et al.  Riemannian Geometry Applied to BCI Classification , 2010, LVA/ICA.

[33]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[34]  José del R. Millán,et al.  Phase-based features for motor imagery brain-computer interfaces , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[35]  Saskia Haegens,et al.  Inter- and intra-individual variability in alpha peak frequency , 2014, NeuroImage.

[36]  E. Gysels,et al.  Phase synchronization for the recognition of mental tasks in a brain-computer interface , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[37]  D. Looney,et al.  Time-Frequency Analysis of EEG Asymmetry Using Bivariate Empirical Mode Decomposition , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[38]  Matthew A. Wilson,et al.  Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother , 2009, Journal of Neuroscience Methods.

[39]  D I Boomsma,et al.  Heritability of background EEG across the power spectrum. , 2005, Psychophysiology.

[40]  Minkyu Ahn,et al.  Journal of Neuroscience Methods , 2015 .

[41]  Po-Lei Lee,et al.  Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing , 2011, Journal of Neuroscience Methods.

[42]  Yijun Wang,et al.  Phase Synchrony Measurement in Motor Cortex for Classifying Single-trial EEG during Motor Imagery , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.