Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures

Substantial effort has been placed on developing semiconducting carbon nanotubes and nanowires as building blocks for electronic devices—such as field-effect transistors—that could replace conventional silicon transistors in hybrid electronics or lead to stand-alone nanosystems. Attaching electric contacts to individual devices is a first step towards integration, and this step has been addressed using lithographically defined metal electrodes. Yet, these metal contacts define a size scale that is much larger than the nanometre-scale building blocks, thus limiting many potential advantages. Here we report an integrated contact and interconnection solution that overcomes this size constraint through selective transformation of silicon nanowires into metallic nickel silicide (NiSi) nanowires. Electrical measurements show that the single crystal nickel silicide nanowires have ideal resistivities of about 10 µΩ cm and remarkably high failure-current densities, >108 A cm-2. In addition, we demonstrate the fabrication of nickel silicide/silicon (NiSi/Si) nanowire heterostructures with atomically sharp metal–semiconductor interfaces. We produce field-effect transistors based on those heterostructures in which the source–drain contacts are defined by the metallic NiSi nanowire regions. Our approach is fully compatible with conventional planar silicon electronics and extendable to the 10-nm scale using a crossed-nanowire architecture.

[1]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[2]  Thomas A Steitz,et al.  The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase , 2004, Cell.

[3]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[4]  B. Meyer,et al.  Intrinsic properties of NiSi , 1997 .

[5]  O. Nureki,et al.  Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA‐adding enzyme structure , 2003, The EMBO journal.

[6]  Simon Rainville,et al.  An Ion Balance for Ultra-High-Precision Atomic Mass Measurements , 2004, Science.

[7]  T. Steitz,et al.  Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. , 1998, Current opinion in structural biology.

[8]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[9]  Hiroshi Iwai,et al.  Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI , 1995 .

[10]  M. Feher,et al.  CASSCF calculations of the multipole moments and dipole polarisability functions of the X2Σ+ and A2Π states of CO+ , 1995 .

[11]  K. Toman The structure of NiSi , 1951 .

[12]  Hartmut Häffner,et al.  New determination of the electron's mass. , 2001, Physical review letters.

[13]  F. Cramer,et al.  The -C-C-A end of tRNA and its role in protein biosynthesis. , 1985, Progress in nucleic acid research and molecular biology.

[14]  T. Steitz,et al.  Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template , 2004, Nature.

[15]  D. G. Pierce,et al.  Electromigration: A review , 1997 .

[16]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[17]  R. Huber,et al.  Crystal structure of the human CCA-adding enzyme: insights into template-independent polymerization. , 2003, Journal of molecular biology.

[18]  C. Lieber,et al.  The incredible shrinking circuit. , 2001, Scientific American.

[19]  Chris Sander,et al.  DNA polymerase β belongs to an ancient nucleotidyltransferase superfamily , 1995 .

[20]  W. Keller,et al.  Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. , 1996, The EMBO journal.

[21]  Wei,et al.  Quantum phase of induced dipoles moving in a magnetic field. , 1995, Physical review letters.

[22]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[23]  Zhen Yao,et al.  Electrical Transport Through Single-Wall Carbon Nanotubes , 2001 .

[24]  J. J. Meulen,et al.  Determination of the electric dipole moment of KrH , 1992 .

[25]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[26]  A. Weiner,et al.  CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? , 1998, The EMBO journal.

[27]  A. Bhatia,et al.  Polarizability of helium and the negative hydrogen ion , 1994 .

[28]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[29]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[30]  A. Weiner,et al.  CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. , 1996, RNA.

[31]  A. Weiner,et al.  A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme. , 1998, RNA.

[32]  S.Heinze,et al.  Carbon Nanotubes as Schottky Barrier Transistors , 2002, cond-mat/0207397.

[33]  P. Schwinberg,et al.  Ultra-Precise Mass Measurements Using the UW-PTMS , 2001 .

[34]  R. Woods,et al.  Microwave absorption spectrum of the CO + ion , 1975 .

[35]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[36]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[37]  A. Khabbaz,et al.  Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles , 1999 .

[38]  Y. Hou Unusual synthesis by the Escherichia coli CCA-adding enzyme. , 2000, RNA.

[39]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[40]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[41]  Boyce,et al.  Accurate atomic masses for fundamental metrology. , 1994, Physical review letters.

[42]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[43]  D. L. Thurlow,et al.  Cytidines in tRNAs that are required intact by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. , 1990, Nucleic acids research.

[44]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[45]  Hongjie Dai,et al.  Carbon Nanotubes: Synthesis, Integration, and Properties , 2003 .

[46]  A. Weiner,et al.  Collaboration Between CC- and A-Adding Enzymes to Build and Repair the 3'-Terminal CCA of tRNA in Aquifex aeolicus , 2001, Science.

[47]  Suman Datta,et al.  Silicon nano-transistors for logic applications , 2003 .

[48]  A. Weiner,et al.  Closely Related CC- and A-adding Enzymes Collaborate to Construct and Repair the 3′-Terminal CCA of tRNA in Synechocystis sp. and Deinococcus radiodurans * , 2002, The Journal of Biological Chemistry.

[49]  A. Weiner,et al.  Crystal Structures of the Bacillus stearothermophilus CCA-Adding Enzyme and Its Complexes with ATP or CTP , 2002, Cell.

[50]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[51]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[52]  Yong Xiong,et al.  Crystal structures of an archaeal class I CCA-adding enzyme and its nucleotide complexes. , 2003, Molecular cell.

[53]  A. Weiner,et al.  The CCA-adding Enzyme Has a Single Active Site* , 1998, The Journal of Biological Chemistry.

[54]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[55]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[56]  R. Green,et al.  Base-pairing between 23S rRNA and tRNA in the ribosomal A site. , 1999, Molecular cell.

[57]  Kessler,et al.  Test of special relativity by a determination of the Lorentz limiting velocity: Does E=mc2? , 1991, Physical review. D, Particles and fields.

[58]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.