Anatomy of the antibody molecule.

The structures of the various regions of an antibody molecule are analysed and correlated with biological function. The structural features which relate to potential applications are detailed.

[1]  C. Chothia,et al.  Domain association in immunoglobulin molecules. The packing of variable domains. , 1985, Journal of molecular biology.

[2]  A. Edmundson,et al.  An autoantibody to single‐stranded DNA: Comparison of the three‐dimensional structures of the unliganded fab and a deoxynucleotide–fab complex , 1991, Proteins.

[3]  R. Poljak,et al.  Three-dimensional structure of an idiotope–anti-idiotope complex , 1990, Nature.

[4]  A. Fersht,et al.  Hydrogen bonding and biological specificity analysed by protein engineering , 1985, Nature.

[5]  I. Wilson,et al.  Structural evidence for induced fit as a mechanism for antibody-antigen recognition. , 1994, Science.

[6]  E. Padlan,et al.  The nature and importance of the inter‐ε chain disulfide bonds in human IgE , 1991, European journal of immunology.

[7]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[8]  R. Poljak,et al.  Crystal structure of human immunoglobulin fragment Fab new refined at 2.0 Å esolution , 1992, Proteins.

[9]  G. Winter,et al.  Antibody Engineering [and Discussion] , 1989 .

[10]  A. Lesk,et al.  Elbow motion in the immunoglobulins involves a molecular ball-and-socket joint , 1988, Nature.

[11]  S. Miller Protein-protein recognition and the association of immunoglobulin constant domains. , 1990, Journal of molecular biology.

[12]  R. Poljak,et al.  The Three-Dimensional Structure of the Fab′ Fragment of a Human Myeloma Immunoglobulin at 2.0-Å Resolution , 1974 .

[13]  M. Schiffer,et al.  Characterization and preliminary crystallographic data on the VL-related fragment of the human kI Bence Jones protein Wat. , 1981, Journal of molecular biology.

[14]  D. Burton,et al.  Antibody: the flexible adaptor molecule. , 1990, Trends in biochemical sciences.

[15]  C. Queen,et al.  Humanized antibodies for therapy , 1991, Nature.

[16]  G. Petsko,et al.  Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 1. X-ray crystallography, site-directed mutagenesis, and modeling of the complex with hapten. , 1991, Biochemistry.

[17]  P. Colman,et al.  Structure of antibody-antigen complexes: implications for immune recognition. , 1988, Advances in immunology.

[18]  J Deisenhofer,et al.  Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 A and 1.0 A resolution. , 1980, Journal of molecular biology.

[19]  P. T. Jones,et al.  Replacing the complementarity-determining regions in a human antibody with those from a mouse , 1986, Nature.

[20]  R. Poljak,et al.  Studies on the three-dimensional structure of immunoglobulins. , 1976, Progress in biophysics and molecular biology.

[21]  G. Cohen,et al.  Antibody Fab assembly: the interface residues between CH1 and CL. , 1986, Molecular immunology.

[22]  T. Waldmann,et al.  A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin , 1989, Nature.

[23]  K. R. Ely,et al.  Binding of 2,4-dinitrophenyl compounds and other small molecules to a crystalline lambda-type Bence-Jones dimer. , 1974, Biochemistry.

[24]  Geraldine Taylor,et al.  Reshaping a Human Monoclonal Antibody to Inhibit Human Respiratory Syncytial Virus Infection in Vivo , 1991, Bio/Technology.

[25]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[26]  C. Milstein,et al.  Reshaping human antibodies: grafting an antilysozyme activity. , 1988, Science.

[27]  L. M. Amzel,et al.  Molecular‐replacement structure of guinea pig IgGl pFc' refined at 3.1Å resolution , 1985 .

[28]  L. Steiner Immunoglobulin disulfide bridges: Theme and variations , 1985, Bioscience reports.

[29]  K. R. Ely,et al.  Three-dimensional structure of a light chain dimer crystallized in water. Conformational flexibility of a molecule in two crystal forms. , 1989, Journal of molecular biology.

[30]  Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. R. Ely,et al.  Three-dimensional structure of the Mcg IgG1 immunoglobulin. , 1983, Molecular immunology.

[32]  D. Davies,et al.  Three-dimensional structure of an intact human immunoglobulin. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Axel T. Brunger,et al.  Solution of a Fab (26-10)/digoxin complex by generalized molecular replacement , 1991 .

[34]  S. Morrison,et al.  Genetically engineered antibody molecules. , 1989, Advances in immunology.

[35]  E A Padlan Structural implications of sequence variability in immunoglobulins. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Bhat,et al.  Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-A resolution. , 1991, The Journal of biological chemistry.

[37]  R L Stanfield,et al.  Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. , 1992, Science.

[38]  T. Ternynck,et al.  Two murine natural polyreactive autoantibodies are encoded by nonmutated germ-line genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M Levitt,et al.  A humanized antibody that binds to the interleukin 2 receptor. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. Wang,et al.  Novel arrangement of immunoglobulin variable domains: X-ray crystallographic analysis of the lambda-chain dimer Bence-Jones protein Loc. , 1985, Biochemistry.

[41]  D Altschuh,et al.  A conformation of cyclosporin A in aqueous environment revealed by the X-ray structure of a cyclosporin-Fab complex. , 1992, Science.

[42]  T. Waldmann,et al.  Monoclonal antibodies in diagnosis and therapy , 1991, Science.

[43]  D. Beale,et al.  Structure and function of the constant regions of immunoglobulins , 1976, Quarterly Reviews of Biophysics.

[44]  J. Novotný,et al.  Structural invariants of antigen binding: comparison of immunoglobulin VL-VH and VL-VL domain dimers. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Bhat,et al.  The galactan‐binding immunoglobulin Fab J539: An x‐ray diffraction study at 2.6‐Å resolution , 1986, Proteins.

[46]  K. D. Hardman,et al.  Single-chain antigen-binding proteins. , 1988, Science.

[47]  W. Jencks Catalysis in chemistry and enzymology , 1969 .

[48]  I. Mian,et al.  Structure, function and properties of antibody binding sites. , 1991, Journal of molecular biology.

[49]  J. Navaza,et al.  Crystallization, preliminary X-ray diffraction study, and crystal packing of a complex between anti-hen lysozyme antibody F9.13.7 and guinea-fowl lysozyme. , 1993, Proteins.

[50]  R. Poljak,et al.  The structural basis of antigen-antibody recognition. , 1987, Annual review of biophysics and biophysical chemistry.

[51]  R. Glockshuber,et al.  The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. , 1992, Biochemistry.

[52]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[53]  P. Schultz,et al.  The interplay between chemistry and biology in the design of enzymatic catalysts. , 1988, Science.

[54]  L. Presta,et al.  X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. , 1993, Journal of molecular biology.

[55]  R. Poljak,et al.  Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution , 1986, Science.

[56]  C. Chang,et al.  Structure of a second crystal form of Bence-Jones protein Loc: strikingly different domain associations in two crystal forms of a single protein. , 1989, Biochemistry.

[57]  R. Huber,et al.  The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-A resolution. , 1975, Biochemistry.

[58]  M. Lascombe,et al.  Three-dimensional structure of antibodies. , 1988, Annual review of immunology.

[59]  D. Davies,et al.  The three-dimensional structure at 6 A resolution of a human gamma Gl immunoglobulin molecule. , 1971, The Journal of biological chemistry.

[60]  R Pumphrey,et al.  Computer models of the human immunoglobulins shape and segmental flexibility. , 1986, Immunology today.

[61]  J Novotny,et al.  Electrostatic fields in antibodies and antibody/antigen complexes. , 1992, Progress in biophysics and molecular biology.

[62]  M. Cygler,et al.  Recognition of a cell-surface oligosaccharide of pathogenic Salmonella by an antibody Fab fragment. , 1991, Science.

[63]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[64]  R. Huber,et al.  Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI. , 1974, European journal of biochemistry.

[65]  E. Padlan,et al.  Structural basis for the specificity of antibody–antigen reactions and structural mechanisms for the diversification of antigen-binding specificities , 1977, Quarterly Reviews of Biophysics.

[66]  R E Hubbard,et al.  Crystal structure of a chimeric Fab' fragment of an antibody binding tumour cells. , 1992, Journal of molecular biology.

[67]  E. Padlan,et al.  Localized deletion-insertion mutations: a major factor in the evolution of immunoglobulin structural variability. , 1976, Journal of immunology.

[68]  D. Burton Immunoglobulin G: functional sites. , 1985, Molecular immunology.

[69]  P. Colman,et al.  Crystal and molecular structure of the dimer of variable domains of the Bence-Jones protein ROY. , 1977, Journal of molecular biology.

[70]  E. Padlan,et al.  A model of the Fc of immunoglobulin E. , 1985, Molecular immunology.

[71]  M. Levitt,et al.  Structural and kinetic studies of the Fab fragment of a monoclonal anti-spin label antibody by nuclear magnetic resonance. , 1991, Journal of molecular biology.

[72]  R. Huber,et al.  Antibody–antigen flexibility , 1987, Nature.

[73]  G. Air,et al.  Crystal structures of neuraminidase-antibody complexes. , 1989, Cold Spring Harbor symposia on quantitative biology.

[74]  C. Milstein,et al.  Three‐dimensional structure determination of an anti‐2‐phenyloxazolone antibody: the role of somatic mutation and heavy/light chain pairing in the maturation of an immune response. , 1990, The EMBO journal.

[75]  Alexander McPherson,et al.  The three-dimensional structure of an intact monoclonal antibody for canine lymphoma , 1992, Nature.

[76]  T. T. Wu,et al.  Length distribution of CDRH3 in antibodies , 1993, Proteins.

[77]  R. Bruccoleri,et al.  On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. , 1989, Biochemistry.

[78]  R. Poljak,et al.  Three-dimensional structure of the Fab' fragment of a human immunoglobulin at 2,8-A resolution. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Kretsinger,et al.  Crystal structure of an anti-Lewis alpha Fab determined by molecular replacement methods. , 1987, Journal of molecular biology.

[80]  Gerald M. Edelman,et al.  THE COVALENT STRUCTURE OF AN ENTIRE γG IMMUNOGLOBULIN MOLECULE , 1969 .

[81]  G. Cohen,et al.  The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[82]  C. Chang,et al.  Analysis of immunoglobulin domain interactions. Evidence for a dominant role of salt bridges. , 1988, Journal of molecular biology.

[83]  R. Huber Structural basis for antigen-antibody recognition , 1986, Science.

[84]  J. Anglister Use of deuterium labelling in NMR studies of antibody combining site structure , 1990, Quarterly Reviews of Biophysics.

[85]  E. Padlan,et al.  Variability of three-dimensional structure in immunoglobulins. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[86]  P. Kirkham,et al.  Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. , 1992, The EMBO journal.

[87]  E. Padlan,et al.  Antibody-antigen complexes. , 1988, Annual review of biochemistry.

[88]  E. Padlan,et al.  Three-dimensional structure of immunoglobulins. , 1975, Annual review of biochemistry.

[89]  A. D. Clark,et al.  Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations , 1992, Nature.

[90]  A T Brünger,et al.  Three-dimensional structure of an angiotensin II-Fab complex at 3 A: hormone recognition by an anti-idiotypic antibody. , 1992, Science.

[91]  T. N. Bhat,et al.  Small rearrangements in structures of Fv and Fab fragments of antibody D 1.3 on antigen binding , 1990, Nature.

[92]  Y. Satow,et al.  Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. , 1985, Journal of molecular biology.

[93]  T. T. Wu,et al.  AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY , 1970, The Journal of experimental medicine.

[94]  E. Kabat,et al.  Sequences of proteins of immunological interest , 1991 .

[95]  E. Padlan On the nature of antibody combining sites: Unusual structural features that may confer on these sites an enhanced capacity for binding ligands , 1990, Proteins.

[96]  W G Laver,et al.  Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. , 1992, Journal of molecular biology.

[97]  P. Casali,et al.  Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+ B cells from patients with rheumatoid arthritis , 1988, The Journal of experimental medicine.

[98]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[99]  V. Luzzati,et al.  Resolution d'un structure cristalline lorsque les positions d'une partie des atoms sont connues: traitement statistique , 1953 .

[100]  R. Poljak,et al.  Structure and specificity of antibody molecules. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[101]  Lutz Riechmann,et al.  Reshaping human antibodies for therapy , 1988, Nature.

[102]  G. Cohen,et al.  Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[103]  A M Lesk,et al.  Structural repertoire of the human VH segments. , 1992, Journal of molecular biology.

[104]  F. Guadagni,et al.  New concepts in monoclonal antibody based radioimmunodiagnosis and radioimmunotherapy of carcinoma. , 1991, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.

[105]  B. Baird,et al.  Dynamic conformations compared for IgE and IgG1 in solution and bound to receptors. , 1992, Biochemistry.

[106]  M. L. Mason,et al.  Three‐dimensional structure of a fluorescein–Fab complex crystallized in 2‐methyl‐2,4‐pentanediol , 1989, Proteins.

[107]  J. Berzofsky,et al.  The antigenic structure of proteins: a reappraisal. , 1984, Annual review of immunology.

[108]  E. Padlan,et al.  Structure at 4.5 A resolution of a phosphorylcholine-binding fab. , 1973, Nature: New biology.

[109]  B. Baird,et al.  Conformations of IgE bound to its receptor Fc epsilon RI and in solution. , 1991, Biochemistry.

[110]  S. Perkins,et al.  Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling. A possible mechanism for complement activation. , 1991, Journal of molecular biology.

[111]  E. Padlan,et al.  Immunoglobulin structures at high resolution. , 1975, Contemporary topics in molecular immunology.

[112]  J. Deisenhofer Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. , 1981, Biochemistry.

[113]  S. Avrameas,et al.  Poly(Glu60Ala30Tyr10) (GAT)‐induced IgG monoclonal antibodies cross‐react with various self and non‐self antigens through the complementarity determining regions. Comparison with IgM monoclonal polyreactive natural antibodies , 1990, European journal of immunology.

[114]  A T Brünger,et al.  2.9 A resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. , 1991, Journal of molecular biology.

[115]  D. Burton,et al.  Localization of the binding site for the human high-affinity Fc receptor on IgG , 1988, Nature.

[116]  L. Jin,et al.  High resolution functional analysis of antibody-antigen interactions. , 1992, Journal of molecular biology.

[117]  J. Schlom,et al.  Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies. , 1988, Cancer research.

[118]  C. Betzel,et al.  Three‐dimensional structure of the Fab fragment of a neutralizing antibody to human rhinovirus serotype 2 , 1992, Protein science : a publication of the Protein Society.

[119]  K. R. Ely,et al.  Structure of a lambda-type Bence-Jones protein at 3.5-A resolution. , 1972, Biochemistry.

[120]  C. Chothia,et al.  The structure of protein-protein recognition sites. , 1990, The Journal of biological chemistry.

[121]  L. Presta,et al.  Humanization of an anti-p185HER2 antibody for human cancer therapy. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[122]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[123]  E. Padlan,et al.  A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. , 1991, Molecular immunology.

[124]  L. Prasad,et al.  Structure determination of a monoclonal Fab fragment specific for histidine-containing protein of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli. , 1988, The Journal of biological chemistry.

[125]  D. Wigley,et al.  Crystal structure of a streptococcal protein G domain bound to an Fab fragment , 1992, Nature.

[126]  E. Baldwin,et al.  Crystal parameters and molecular replacement of an anticholera toxin peptide complex , 1991, Proteins.

[127]  B C Finzel,et al.  Three-dimensional structure of an antibody-antigen complex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[128]  A. Rees,et al.  Modelling of the combining sites of three anti‐lysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope. , 1986, The EMBO journal.

[129]  B. Cheson,et al.  The binding of opioid peptides to the Mcg light chain dimer: flexible keys and adjustable locks. , 1987, Molecular immunology.

[130]  Unexpected similarities in the crystal structures of the Mcg light-chain dimer and its hybrid with the Weir protein. , 1985, Molecular immunology.

[131]  E. Padlan,et al.  Structural basis for the specificity of phosphorylcholine-binding immunoglobulins. , 1976, Immunochemistry.

[132]  M Karplus,et al.  Molecular anatomy of the antibody binding site. , 1983, The Journal of biological chemistry.

[133]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[134]  D. Phillips,et al.  The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G. , 1983, Biochemical Society transactions.

[135]  R. Bruccoleri,et al.  Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Twisting into shape , 1992, Current Biology.

[137]  W Furey,et al.  Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 A resolution. , 1983, Journal of molecular biology.

[138]  E E Abola,et al.  Conformational flexibility in immunoglobulins. , 1978, Contemporary topics in molecular immunology.

[139]  H. Bilofsky,et al.  Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. , 1977, The Journal of biological chemistry.

[140]  B. Rees,et al.  Crystallographic analysis of the interaction between cyclosporin A and the Fab fragment of a monoclonal antibody , 1993, Proteins.

[141]  G. Winter,et al.  Antibody framework residues affecting the conformation of the hypervariable loops. , 1992, Journal of molecular biology.

[142]  S L Morrison,et al.  Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[143]  A Tramontano,et al.  Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. , 1990, Journal of molecular biology.

[144]  J. Claverie,et al.  A strong propensity toward loop formation characterizes the expressed reading frames of the D segments at the Ig H and T cell receptor loci , 1991, European journal of immunology.

[145]  R. Poljak,et al.  Three-dimensional structure of immunoglobulins. , 1979, Annual review of biochemistry.

[146]  G. Air,et al.  Three-dimensional structures of influenza virus neuraminidase-antibody complexes. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[147]  A. Edmundson,et al.  Three-dimensional structure of an Fv from a human IgM immunoglobulin. , 1992, Journal of molecular biology.

[148]  G. Cohen,et al.  On the specificity of antibody/antigen interactions: phosphocholine binding to McPC603 and the correlation of three-dimensional structure and sequence data. , 1985, Annales de l'Institut Pasteur. Immunologie.

[149]  R. Sarma,et al.  The three-dimensional structure of a human IgGl immunoglobulin at 4 Å resolution: a computer fit of various structural domains on the electron density map , 1982 .

[150]  H. Bilofsky,et al.  Variable region genes for the immunoglobulin framework are assembled from small segments of DNA--a hypothesis. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[151]  J. N. Varghese,et al.  Three-dimensional structure of a complex of antibody with influenza virus neuraminidase , 1987, Nature.

[152]  M. Levitt,et al.  Probing antibody diversity by 2D NMR: comparison of amino acid sequences, predicted structures, and observed antibody-antigen interactions in complexes of two antipeptide antibodies. , 1989, Biochemistry.

[153]  G. Winter,et al.  The binding site for C1q on IgG , 1988, Nature.

[154]  L M Amzel,et al.  The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[155]  A. Boodhoo,et al.  Crystallization and structure determination of an autoimmune anti-poly(dT) immunoglobulin Fab fragment at 3.0 A resolution. , 1987, The Journal of biological chemistry.

[156]  A. Plückthun,et al.  Refined crystal structure of a recombinant immunoglobulin domain and a complementarity-determining region 1-grafted mutant. , 1993, Journal of molecular biology.

[157]  D. Fremont,et al.  Structural aspects of antibodies and antibody-antigen complexes. , 2007, Ciba Foundation symposium.

[158]  R. Webster,et al.  Crystal structures of two mutant neuraminidase-antibody complexes with amino acid substitutions in the interface. , 1992, Journal of molecular biology.

[159]  D. Davies,et al.  Structural basis of antibody function. , 1983, Annual review of immunology.

[160]  M. Levitt,et al.  Aromatic Rings Act as Hydrogen Bond Acceptors , 2022 .

[161]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.