In situ poling X-ray diffraction studies of lead-free BiFeO3–SrTiO3 ceramics

[1]  Ge Wang,et al.  Thermally-induced local structural transformations in Na0.5Bi0.5TiO3-KNbO3 ceramics , 2021 .

[2]  S. Wada,et al.  Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations , 2020, Communications Materials.

[3]  Ge Wang,et al.  Superior energy density through tailored dopant strategies in multilayer ceramic capacitors , 2020, Energy & Environmental Science.

[4]  Jianli Wang,et al.  Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics , 2020 .

[5]  Jiagang Wu,et al.  Perovskite BiFeO3–BaTiO3 Ferroelectrics: Engineering Properties by Domain Evolution and Thermal Depolarization Modification , 2020, Advanced Electronic Materials.

[6]  X. Tan,et al.  Electric-field-induced structure and domain texture evolution in PbZrO3-based antiferroelectric by in-situ high-energy synchrotron X-ray diffraction , 2020 .

[7]  T. Song,et al.  Enhancing piezoelectric coefficient with high Curie temperature in BiAlO3-modified BiFeO3–BaTiO3 lead-free ceramics , 2019 .

[8]  Ge Wang,et al.  Electric field‐induced irreversible relaxor to ferroelectric phase transformations in Na 0.5 Bi 0.5 TiO 3 ‐NaNbO 3 ceramics , 2019, Journal of the American Ceramic Society.

[9]  B. Malič,et al.  Processing, piezoelectric and ferroelectric properties of (x)BiFeO3-(1-x)SrTiO3 ceramics , 2019, Journal of the European Ceramic Society.

[10]  Jacob L. Jones,et al.  Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics , 2019, Journal of Materials Chemistry A.

[11]  D. Hall,et al.  Quenching-assisted actuation mechanisms in core–shell structured BiFeO3–BaTiO3 piezoceramics , 2019, Journal of Materials Chemistry C.

[12]  Ying Chen,et al.  In-situ XRD study of actuation mechanisms in BiFeO3-K0.5Bi0.5TiO3-PbTiO3 ceramics , 2019, Acta Materialia.

[13]  S. Saha,et al.  Ferromagnetism in the multiferroic alloy systems BiFeO3-BaTiO3 and BiFeO3-SrTiO3: Intrinsic or extrinsic? , 2019, Applied Physics Letters.

[14]  F. Fang,et al.  Microstructure , 2019, CIRP Encyclopedia of Production Engineering.

[15]  Jianli Wang,et al.  Excellent thermal stability and aging behaviors in BiFeO 3 ‐BaTiO 3 piezoelectric ceramics with rhombohedral phase , 2019, Journal of the American Ceramic Society.

[16]  Ge Wang,et al.  BiFeO3-BaTiO3: A new generation of lead-free electroceramics , 2018, Journal of Advanced Dielectrics.

[17]  Ying Chen,et al.  Electric field-induced strain in core-shell structured BiFeO3K0.5Bi0.5TiO3PbTiO3 ceramics , 2018, Acta Materialia.

[18]  R. Huddleston Structure , 2018, Jane Austen's Style.

[19]  Moon J. Kim,et al.  Giant polarization in super-tetragonal thin films through interphase strain , 2018, Science.

[20]  X. Tan,et al.  High strain (0.4%) Bi(Mg 2/3 Nb 1/3 )O 3 ‐BaTiO 3 ‐BiFeO 3 lead‐free piezoelectric ceramics and multilayers , 2018, Journal of the American Ceramic Society.

[21]  D. Sinclair,et al.  Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications , 2018, Journal of the European Ceramic Society.

[22]  D. Hall,et al.  Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy , 2018 .

[23]  J. Deng,et al.  Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary. , 2018, Physical review letters.

[24]  Zhao Pan,et al.  Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials. , 2017, Physical review letters.

[25]  Jianguo Chen,et al.  Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3–(1 − x)BaTiO3 ceramics near the morphotropic phase boundary , 2017, Journal of Materials Science.

[26]  Jacob L. Jones,et al.  External-field-induced crystal structure and domain texture in (1−x)Na0.5Bi0.5TiO3–xK0.5Bi0.5TiO3 piezoceramics , 2017 .

[27]  I. Reaney,et al.  Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics , 2017 .

[28]  Ge Wang,et al.  Structural characterization of the electric field-induced ferroelectric phase in Na0.5Bi0.5TiO3-KNbO3 ceramics , 2016 .

[29]  Structural, dielectric, and magnetic properties of BiFeO3-SrTiO3 solid solution ceramics , 2016 .

[30]  J. Yu,et al.  Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites , 2016, Journal of Materials Science: Materials in Electronics.

[31]  Effects of Nb doping on the microstructure, ferroelectric and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics , 2016, Bulletin of Materials Science.

[32]  S. Wada,et al.  Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics , 2016 .

[33]  Changrong Zhou,et al.  Normal-to-relaxor ferroelectric phase transition and electrical properties in Nb-modified 0.72BiFeO3-0.28BaTiO3 ceramics , 2016, Journal of Electroceramics.

[34]  Jiagang Wu,et al.  Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics , 2015 .

[35]  P. Withers,et al.  Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction , 2015 .

[36]  W. Fei,et al.  Large piezoelectric response of BiFeO3/BaTiO3 polycrystalline films induced by the low-symmetry phase. , 2015, Physical chemistry chemical physics : PCCP.

[37]  Dunmin Lin,et al.  Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al‐modified BiFeO3–BaTiO3 multiferroic ceramics , 2015 .

[38]  ubir Sachde,et al.  Phase Transition , 2019, Encyclopedia of Social Network Analysis and Mining.

[39]  Dunmin Lin,et al.  Phase transition, dielectric, ferroelectric and ferromagnetic properties of La-doped BiFeO3–BaTiO3 multiferroic ceramics , 2015, Journal of Materials Science: Materials in Electronics.

[40]  K. Lam,et al.  Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics , 2014 .

[41]  E. Defay,et al.  Correlation between electric-field-induced phase transition and piezoelectricity in lead zirconate titanate films , 2014, 1501.06378.

[42]  A. Senyshyn,et al.  Magneto-structural study of the multiferroic BiFeO3–SrTiO3 , 2014 .

[43]  Jacob L. Jones,et al.  BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties , 2014 .

[44]  W. Zhou,et al.  Microstructure, Ferroelectric, Piezoelectric, and Ferromagnetic Properties of Sc‐Modified BiFeO3–BaTiO3 Multiferroic Ceramics with MnO2 Addition , 2014 .

[45]  Changrong Zhou,et al.  Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature , 2013 .

[46]  Dielectric, Ferroelectric, and Piezoelectric Properties of Bi(Ni1/2Ti1/2)O3‐Modified BiFeO3–BaTiO3 Ceramics with High Curie Temperature , 2012 .

[47]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[48]  C. Wang,et al.  Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution , 2011 .

[49]  Takayuki Watanabe,et al.  Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3Ceramics , 2011 .

[50]  Y. Yao,et al.  Phase transition and ferroelectric properties of xBiFeO3–(1−x)BaTiO3 ceramics , 2011 .

[51]  Jacob L. Jones,et al.  Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics , 2011 .

[52]  H. Yabuta,et al.  Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 Ceramics , 2011 .

[53]  Hartmut Fuess,et al.  In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi-Based Lead-Free Piezoceramics , 2010 .

[54]  Jacob L. Jones,et al.  Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3: A combinatorial investigation , 2010 .

[55]  Jacob L. Jones,et al.  Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic , 2009 .

[56]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[57]  Yan Ma,et al.  Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics , 2009 .

[58]  S. Qu,et al.  Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3–0.3BaTiO3 solid solution , 2008 .

[59]  W. Prellier,et al.  Periodicity dependence of the ferroelectric properties in BiFeO3∕SrTiO3 multiferroic superlattices , 2007, 0710.4777.

[60]  Helmut Ehrenberg,et al.  Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system , 2007 .

[61]  Jacob L. Jones,et al.  Texture and Anisotropy of Polycrystalline Piezoelectrics , 2007 .

[62]  M. Viret,et al.  Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields , 2007, 0706.1681.

[63]  D. Sinclair,et al.  Engineered sintering aids for PbO-based electroceramics , 2007 .

[64]  P. Marchet,et al.  Structural and dielectric studies of the Na0.5Bi0.5TiO3–BiFeO3 system , 2007 .

[65]  Seong‐Hyeon Hong,et al.  Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics , 2005 .

[66]  J. Neaton,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2004, cond-mat/0407679.

[67]  M. Daymond The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks , 2004 .

[68]  I. Reaney,et al.  Crystal and domain structure of the BiFeO3-PbTiO3 solid solution , 2003 .

[69]  C. Ford Processing , 1987, Robotica.

[70]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .