A Bayesian nonparametric approach to super-resolution single-molecule localization

We consider the problem of single-molecule identification in super-resolution microscopy. Super-resolution microscopy overcomes the diffraction limit by localizing individual fluorescing molecules in a field of view. This is particularly difficult since each individual molecule appears and disappears randomly across time and because the total number of molecules in the field of view is unknown. Additionally, data sets acquired with super-resolution microscopes can contain a large number of spurious fluorescent fluctuations caused by background noise. To address these problems, we present a Bayesian nonparametric framework capable of identifying individual emitting molecules in super-resolved time series. We tackle the localization problem in the case in which each individual molecule is already localized in space. First, we collapse observations in time and develop a fast algorithm that builds upon the Dirichlet process. Next, we augment the model to account for the temporal aspect of fluorophore photo-physics. Finally, we assess the performance of our methods with ground-truth data sets having known biological structure.

[1]  George Biddell Airy,et al.  On the diffraction of an object-glass with circular aperture , 1835 .

[2]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[3]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[4]  W. Ewens Population Genetics Theory - The Past and the Future , 1990 .

[5]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[6]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[7]  Radford M. Neal Bayesian Mixture Modeling , 1992 .

[8]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[9]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[10]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[11]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[12]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[13]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[14]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[15]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[16]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[17]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[18]  A. Kottas,et al.  Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis , 2007 .

[19]  Introduction to Variational Methods , 2008 .

[20]  R. Wolpert,et al.  Spatial Regression for Marked Point Processes , 2008 .

[21]  Sergé Arnauld,et al.  Multiple-target tracing (MTT) algorithm probes molecular dynamics at cell surface , 2008 .

[22]  Yee Whye Teh,et al.  The Infinite Factorial Hidden Markov Model , 2008, NIPS.

[23]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[24]  M. D'Angelo,et al.  Structure, dynamics and function of nuclear pore complexes. , 2008, Trends in cell biology.

[25]  Michael I. Jordan,et al.  Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.

[26]  M. Heilemann,et al.  Photoswitches: Key molecules for subdiffraction‐resolution fluorescence imaging and molecular quantification , 2009 .

[27]  J. Lippincott-Schwartz,et al.  Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. , 2009, Trends in cell biology.

[28]  Astrid Magenau,et al.  PALM imaging and cluster analysis of protein heterogeneity at the cell surface , 2010, Journal of biophotonics.

[29]  Jon D. McAuliffe,et al.  Variational Inference for Large-Scale Models of Discrete Choice , 2007, 0712.2526.

[30]  A. Kottas,et al.  Mixture Modeling for Marked Poisson Processes , 2010, 1012.2105.

[31]  Chong Wang,et al.  The IBP Compound Dirichlet Process and its Application to Focused Topic Modeling , 2010, ICML.

[32]  P. Annibale,et al.  Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form , 2010 .

[33]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[34]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[35]  P. Annibale,et al.  Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking , 2011, PloS one.

[36]  Richard E. Turner,et al.  Two problems with variational expectation maximisation for time-series models , 2011 .

[37]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[38]  P. Annibale,et al.  Identification of clustering artifacts in photoactivated localization microscopy , 2011, Nature Methods.

[39]  M. Field,et al.  The nature of transient dark states in a photoactivatable fluorescent protein. , 2011, Journal of the American Chemical Society.

[40]  Hongqiang Ma,et al.  Localization-based super-resolution microscopy with an sCMOS camera. , 2011, Optics express.

[41]  S. Holden,et al.  DAOSTORM: an algorithm for high- density super-resolution microscopy , 2011, Nature Methods.

[42]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[43]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[44]  M. Heilemann,et al.  Live-cell super-resolution imaging with synthetic fluorophores. , 2012, Annual review of physical chemistry.

[45]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[46]  Samuel Kaski,et al.  Sparse Nonparametric Topic Model for Transfer Learning , 2012, ESANN.

[47]  Wendell A. Lim,et al.  Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory , 2013, Proceedings of the National Academy of Sciences.

[48]  Michael I. Jordan,et al.  Cluster and Feature Modeling from Combinatorial Stochastic Processes , 2012, 1206.5862.

[49]  X. Zhuang,et al.  Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons , 2013, Science.

[50]  Daniel N. Rockmore,et al.  A unifying representation for a class of dependent random measures , 2012, AISTATS.

[51]  M. Dahan,et al.  Quantitative Nanoscopy of Inhibitory Synapses: Counting Gephyrin Molecules and Receptor Binding Sites , 2013, Neuron.

[52]  N. Daigle,et al.  Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging , 2013, Science.

[53]  E. Rosten,et al.  ImageJ plug-in for Bayesian analysis of blinking and bleaching , 2013, Nature Methods.

[54]  P. Gönczy,et al.  Resolution Doubling in 3D-STORM Imaging through Improved Buffers , 2013, PloS one.

[55]  Guy M. Hagen,et al.  ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging , 2014, Bioinform..

[56]  Prabuddha Sengupta,et al.  Photocontrollable fluorescent proteins for superresolution imaging. , 2014, Annual review of biophysics.

[57]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[58]  A. Small,et al.  Fluorophore localization algorithms for super-resolution microscopy , 2014, Nature Methods.

[59]  Katharina Gaus,et al.  Method for co-cluster analysis in multichannel single-molecule localisation data , 2014, Histochemistry and Cell Biology.

[60]  Frank Wood,et al.  Infinite Structured Hidden Semi-Markov Models , 2014, 1407.0044.

[61]  S. Hess,et al.  Precisely and accurately localizing single emitters in fluorescence microscopy , 2014, Nature Methods.

[62]  Steve Pressé,et al.  Stochastic approach to the molecular counting problem in superresolution microscopy , 2014, Proceedings of the National Academy of Sciences.

[63]  H. Ewers,et al.  Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast , 2015, Nature Protocols.

[64]  David J. Williamson,et al.  Bayesian cluster identification in single-molecule localization microscopy data , 2015, Nature Methods.

[65]  Erik B. Sudderth,et al.  Reliable and Scalable Variational Inference for the Hierarchical Dirichlet Process , 2015, AISTATS.

[66]  Guillaume Bouchard,et al.  Latent IBP Compound Dirichlet Allocation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Liam Paninski,et al.  Scalable variational inference for super resolution microscopy , 2016, bioRxiv.

[68]  G. Hummer,et al.  Model-independent counting of molecules in single-molecule localization microscopy , 2016, Molecular biology of the cell.

[69]  Fernando Pérez-Cruz,et al.  Infinite Factorial Unbounded-State Hidden Markov Model , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  K. Gaus,et al.  Distinct Mechanisms Regulate Lck Spatial Organization in Activated T Cells , 2016, Front. Immunol..

[71]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[72]  Wesley R. Legant,et al.  Real-time imaging of Huntingtin aggregates diverting target search and gene transcription , 2016, eLife.

[73]  Katharina Gaus,et al.  Turning single-molecule localization microscopy into a quantitative bioanalytical tool , 2017, Nature Protocols.

[74]  Shiliang Sun,et al.  Location Dependent Dirichlet Processes , 2017, IScIDE.

[75]  D. Nino,et al.  Molecular Counting with Localization Microscopy: A Bayesian Estimate Based on Fluorophore Statistics. , 2017, Biophysical Journal.

[76]  Yee Whye Teh,et al.  Poisson Random Fields for Dynamic Feature Models , 2016, J. Mach. Learn. Res..

[77]  Melike Lakadamyali,et al.  DNA Origami offers a versatile method for quantifying protein copy-number in super-resolution , 2017, Nature Methods.

[78]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[79]  Jerry Li,et al.  Exact Model Counting of Query Expressions , 2017, ACM Trans. Database Syst..

[80]  M. Beck,et al.  The nuclear pore complex: understanding its function through structural insight , 2016, Nature Reviews Molecular Cell Biology.

[81]  R. Tjian,et al.  Recent evidence that TADs and chromatin loops are dynamic structures , 2017, Nucleus.

[82]  Integrative Structure and Functional Anatomy of a Nuclear Pore Complex , 2018, Nature.

[83]  Ulf Matti,et al.  Optimal 3D single-molecule localization in real time using experimental point spread functions , 2018, Nature Methods.

[84]  Lucien E. Weiss,et al.  DeepSTORM3D: dense three dimensional localization microscopy and point spread function design by deep learning , 2019, 1906.09957.

[85]  Jakob H. Macke,et al.  Teaching deep neural networks to localize sources in super-resolution microscopy by combining simulation-based learning and unsupervised learning , 2019, ArXiv.

[86]  Prabhat,et al.  Approximate Inference for Constructing Astronomical Catalogs from Images , 2018, The Annals of Applied Statistics.

[87]  F. Cella Zanacchi,et al.  Bayesian analysis of data from segmented super-resolution images for quantifying protein clustering. , 2019, Physical chemistry chemical physics : PCCP.

[88]  Lucien E. Weiss,et al.  DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning , 2020, Nature Methods.

[89]  A Bayesian nonparametric approach to super-resolution single-molecule localization , 2021, The Annals of Applied Statistics.