The potential science and engineering value of samples delivered to Earth by Mars sample return

Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others.

H. Y. McSween | N. Mangold | I. L. ten Kate | D. P. Glavin | J. D. Farmer | L. G. Benning | A. Steele | D. W. Beaty | R. M. Wheeler | E. Ammannito | L. E. Mayhew | S. P. Schwenzer | F. Westall | J. F. Mustard | M. A. Sephton | D. Boucher | F. M. McCubbin | J. A. Spry | P. B. Niles | Y. S. Goreva | E. Sefton-Nash | B. L. Ehlmann | B. P. Weiss | V. Debaille | J. Zipfel | J. L. Bishop | B. Horgan | P. Rettberg | R. Mackelprang | B. Ehlmann | R. Wheeler | J. Mustard | D. Beaty | H. McSween | J. Bishop | S. McLennan | A. Steele | N. Mangold | F. Altieri | J. Brucato | N. Schmitz | B. Weiss | Y. Goreva | C. Herd | S. Werner | G. Ori | M. Sephton | D. Glavin | F. McCubbin | M. Anand | J. Farmer | Z. Sharp | J. Zipfel | F. Westall | F. Raulin | D. D. Des Marais | H. Busemann | N. Tosca | A. Czaja | D. Fernández-Remolar | E. Ammannito | M. Grady | P. Niles | E. Sefton-Nash | B. Carrier | Y. Amelin | M. Anand | L. Borg | D. Boucher | K. A. Campbell | V. Debaille | M. Dixon | J. Filiberto | J. Fogarty | L. Hallis | A. Harrington | E. Hausrath | B. Horgan | T. Kleine | J. Kleinhenz | L. Mayhew | J. T. McCoy | F. Moynier | M. Rucker | N. Schmitz | S. Schwenzer | R. Shaheen | T. Swindle | I. T. ten Kate | M. Van Kranendonk | M. Zorzano | L. Benning | D. Moser | I. T. Kate | J. Spry | D. J. Marais | M. M. Grady | T. Usui | B. Horgan | C. D. K. Herd | Y. Amelin | S. M. McLennan | D. J. Des Marais | F. Altieri | M. P. Zorzano | J. R. Brucato | E. M. Hausrath | M. Humanyun | D. Schuster | S. Siljestrom | C. L. Smith | T. Usui | M. Wadhwa | F. Raulin | T. D. Swindle | H. Busemann | L. E. Borg | P. Rettberg | M. Anand | B. L. Carrier | Y. Amelin | A. D. Czaja | M. Dixon | D. C. Fernandez-Remolar | J. Filiberto | J. Fogarty | L. J. Hallis | A. D. Harrington | E. M. Hausrath | M. Humanyun | T. Kleine | J. Kleinhenz | R. Mackelprang | D. E. Moser | F. Moynier | G. G. Ori | M. A. Rucker | N. Schmitz | R. Shaheen | Z. D. Sharp | D. L. Schuster | S. Siljestrom | N. J. Tosca | T. Usui | M. J. Van Kranendonk | M. Wadhwa | S. C. Werner | M. Kranendonk | Caroline Smith | J. Bishop | Scott M. McLennan | D. Beaty | Kathleen A. Campbell | D. E. Moser | S. McLennan | I. L. ten Kate | D. W. Beaty | M. M. Grady | B. L. Carrier | Y. Amelin | M. Anand | J. L. Bishop | J. R. Brucato | H. Busemann | K. A. Campbell | J. D. Farmer | E. M. Hausrath | D. E. Moser | C. L. Smith | B. P. Weiss | S. C. Werner | S. Werner | R. Shaheen

[1]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[2]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[3]  J. Hayes Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence , 1993 .

[4]  K. Campbell,et al.  Diagenetic transformations (opal-A to quartz) of low- and mid-temperature microbial textures in siliceous hot-spring deposits, Taupo Volcanic Zone, New Zealand , 2003 .

[5]  Gary W. Stutte,et al.  Recovery of Nutrients from Inedible Biomass of Tomato and Pepper to Recycle Fertilizer , 2017 .

[6]  Susan L. Brantley,et al.  Frontiers in exploration of the critical zone , 2005 .

[7]  J. Mustard,et al.  Extensive linear ridge networks in Nili Fossae and Nilosyrtis, Mars: implications for fluid flow in the ancient crust , 2013 .

[8]  G. Wasserburg,et al.  LUNAR NEUTRON STRATIGRAPHY. , 1972 .

[9]  John D. Rummel,et al.  A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth , 2002 .

[10]  A. Knoll,et al.  Water Activity and the Challenge for Life on Early Mars , 2008, Science.

[11]  J. Snape,et al.  Evidence for extremely rapid magma ocean crystallization and crust formation on Mars , 2018, Nature.

[12]  Jeffrey R. Johnson,et al.  Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations , 2017, Journal of geophysical research. Planets.

[13]  D. Ming,et al.  Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[14]  David W. Beaty,et al.  Mars Sample Return — A Proposed Mission Campaign Whose Time is Now , 2018 .

[15]  L. Duvet,et al.  ESA Sample Fetch Rover: Heritage and Way Forward , 2018 .

[16]  A. Navarre‐Sitchler,et al.  Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars , 2008 .

[17]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[18]  Wolfgang Fink,et al.  Exploration of hydrothermal targets on Mars , 2007 .

[19]  M. Badoni,et al.  Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions. , 2018, International journal of food microbiology.

[20]  K. Williford,et al.  Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates , 2016, Geobiology.

[21]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[22]  A. Vasavada,et al.  Low Hesperian PCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars , 2017, Proceedings of the National Academy of Sciences.

[23]  John D. Rummel,et al.  COSPAR's planetary protection policy: A consolidated draft , 2002 .

[24]  I. Wright,et al.  Alteration minerals, fluids, and gases on early Mars: Predictions from 1‐D flow geochemical modeling of mineral assemblages in meteorite ALH 84001 , 2016 .

[25]  J. Bridges,et al.  Fractionated noble gases in the nakhlite Martian meteorites , 2016 .

[26]  M. Sephton,et al.  The nature of organic records in impact excavated rocks on Mars , 2016, Scientific Reports.

[27]  L. Taylor,et al.  Evolution of the martian mantle inferred from the 187Re–187Os isotope and highly siderophile element abundance systematics of shergottite meteorites , 2012 .

[28]  E. Zaikova,et al.  Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer. , 2017, Journal of biomolecular techniques : JBT.

[29]  M. Schoonen,et al.  Acute Meteorite Dust Exposure and Pulmonary Inflammation - Implications for Human Space Exploration , 2017 .

[30]  S. Ruff,et al.  Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile , 2016, Nature Communications.

[31]  C. Marshall,et al.  Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert , 2011 .

[32]  Daria Morozova,et al.  Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions , 2007, Origins of Life and Evolution of Biospheres.

[33]  Frances Westall,et al.  Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa , 2011 .

[34]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[35]  B. Hong,et al.  Molecular analysis of the microbial communities of Mars analog lakes in Western Australia. , 2009, Astrobiology.

[36]  M. Grott,et al.  Crustal recycling, mantle dehydration, and the thermal evolution of Mars , 2010 .

[37]  Harry Y. McSween,et al.  Petrology on Mars , 2015 .

[38]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[39]  Linda C. Kah,et al.  Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources , 2016 .

[40]  J. Bridges,et al.  Alteration assemblages in the nakhlites: Variation with depth on Mars , 2010 .

[41]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[42]  Frances Westall,et al.  Volcaniclastic habitats for early life on Earth and Mars : A case study from 3.5 Ga-old rocks from the Pilbara, Australia , 2011 .

[43]  A. Bhardwaj,et al.  Martian slope streaks as plausible indicators of transient water activity , 2017, Scientific Reports.

[44]  L. O. Tiffin,et al.  Mineral Nutrition of Plants: Principles and Perspectives , 1972 .

[45]  Armanath Maitra,et al.  What is sustainability , 2010 .

[46]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[47]  Dawn Y Sumner,et al.  Preservation of martian organic and environmental records: final report of the Mars biosignature working group. , 2011, Astrobiology.

[48]  L. Nyquist,et al.  Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites , 1995, Science.

[49]  D. Ming,et al.  Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation , 2017 .

[50]  F. McCubbin,et al.  Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust , 2015 .

[51]  T. McCollom,et al.  Compositional controls on hydrogen generation during serpentinization of ultramafic rocks , 2013 .

[52]  Andrew Steele,et al.  Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune , 2017 .

[53]  V. Debaille,et al.  Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars , 2007, Nature.

[54]  G. Etiope UNDERSTANDING THE ORIGIN OF METHANE ON MARS THROUGH ISOTOPIC AND MOLECULAR DATA FROM NOMAD (EXOMARS): WILL THERE BE MORE ANSWERS OR QUESTIONS? , 2017 .

[55]  D. Ming,et al.  A Two‐Step K‐Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters , 2017 .

[56]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[57]  E. Dehouck,et al.  A Frigid Terrestrial Analog for the Paleoclimate of Mars , 2017 .

[58]  Bruce M. Jakosky,et al.  Initial results from the MAVEN mission to Mars , 2015 .

[59]  T. Stephan,et al.  TOF‐SIMS analysis of polycyclic aromatic hydrocarbons in Allan Hills 84001 , 2003 .

[60]  T. Owen,et al.  Update on the Seasonal Atmospheric Composition Measurements by the Sample Analysis at Mars Instrument , 2016 .

[61]  J. Head,et al.  The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits , 2012 .

[62]  R. Wiens,et al.  Basalt–trachybasalt samples in Gale Crater, Mars , 2017 .

[63]  Charles S. Cockell,et al.  Impact-generated hydrothermal systems on Earth and Mars , 2013 .

[64]  Mark A. Sephton,et al.  Organic Geochemistry of Meteorites , 2014 .

[65]  Tara Polsgrove,et al.  Mars Ascent Vehicle Design for Human Exploration , 2015 .

[66]  W. Boynton,et al.  Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument , 2014 .

[67]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[68]  A C Allwood,et al.  Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 Rover. , 2014, Astrobiology.

[69]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[70]  S. McLennan,et al.  Sulfur on Mars , 2010 .

[71]  Y. Liu MARS RETURNED SAMPLE SCIENCE: PLANNING CONSIDERATIONS RELATED TO THE INORGANIC CONTAMINATION OF GEOLOGICAL SAMPLES , 2014 .

[72]  M. Humayun,et al.  Origin and age of the earliest Martian crust from meteorite NWA 7533 , 2013, Nature.

[73]  J. Head,et al.  Polygonal ridge networks on Mars: Diversity of morphologies and the special case of the Eastern Medusae Fossae Formation , 2017 .

[74]  Leroy Cronin,et al.  Beyond prebiotic chemistry , 2016, Science.

[75]  U. Ott,et al.  Are all the ‘martian’ meteorites from Mars? , 1985, Nature.

[76]  J. Filiberto Geochemistry of Martian basalts with constraints on magma genesis , 2017 .

[77]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .

[78]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[79]  Michael H. Wong,et al.  Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover , 2015 .

[80]  B. Weiss,et al.  A two-billion-year history for the lunar dynamo , 2017, Science Advances.

[81]  S. Hoffman,et al.  Human exploration of Mars, Design Reference Architecture 5.0 , 2010, 2010 IEEE Aerospace Conference.

[82]  M. Bizzarro,et al.  Isotope record of mineralogical changes in a spectrum of aqueously altered CM chondrites , 2018, Geochimica et Cosmochimica Acta.

[83]  A. Brack,et al.  A Hydrothermal-Sedimentary Context for the Origin of Life , 2018, Astrobiology.

[84]  Cindy Lee Van Dover,et al.  The Ecology of Deep-Sea Hydrothermal Vents , 2000 .

[85]  M. Kühn Reactive Flow Modeling of Hydrothermal Systems , 2013 .

[86]  J. Bishop,et al.  Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars , 2018, Nature Astronomy.

[87]  K. Benison,et al.  Acid saline lake systems give clues about past environments and the search for life on Mars , 2006 .

[88]  Trevor G. Graff,et al.  Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater , 2016, Proceedings of the National Academy of Sciences.

[89]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[90]  J. Gaier The Effects of Lunar Dust on Eva Systems During the Apollo Missions , 2013 .

[91]  C. McKay,et al.  Physicochemical and Biological Controls on Carbon and Nitrogen in Permafrost from an Ultraxerous Environment, McMurdo Dry Valleys of Antarctica , 2017 .

[92]  N. Bridges,et al.  Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data , 2016 .

[93]  O. Forni,et al.  Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale crater, Mars , 2018, Icarus.

[94]  S. Ruff,et al.  Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars , 2014 .

[95]  K. Edgett,et al.  Paleotopography of Erosional Unconformity, Base of Stimson Formation, Gale Crater, Mars , 2016 .

[96]  Franck Lefèvre,et al.  Seasonal variations of hydrogen peroxide and water vapor on Mars: Further indications of heterogeneous chemistry , 2015 .

[97]  R. Wiens Noble gases released by vacuum crushing of EETA 79001 glass , 1988 .

[98]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[99]  C. Winkler,et al.  Manganese Oxides Resembling Microbial Fabrics and Their Implications for Recognizing Inorganically Preserved Microfossils. , 2018, Astrobiology.

[100]  Patrick McLaren,et al.  The Effects of Sediment Transport on Grain-Size Distributions , 1985 .

[101]  R. Morris,et al.  Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars , 2010 .

[102]  K. Mathew,et al.  Martian atmospheric and interior volatiles in the meteorite Nakhla , 2002 .

[103]  Cristina E. Valdiosera,et al.  Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments , 2013, Proceedings of the National Academy of Sciences.

[104]  Edward M. Rubin,et al.  Genomic Sequencing of Pleistocene Cave Bears , 2005, Science.

[105]  D. Spears The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks , 2012 .

[106]  Carlo R. Laing,et al.  Taking the Pulse , 2014 .

[107]  John H. Jones,et al.  Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars , 2015 .

[108]  L. Deflores,et al.  Deep UV Raman spectroscopy for planetary exploration: The search for in situ organics , 2017 .

[109]  R. Mitchell True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial earth , 2014, American Journal of Science.

[110]  Eric Smith,et al.  The Emergence and Early Evolution of Biological Carbon-Fixation , 2012, PLoS Comput. Biol..

[111]  T. J. Browning,et al.  Further insights into how sediment redox status controls the preservation and composition of sedimentary biomarkers , 2014 .

[112]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Andrew Steele,et al.  Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars , 2018, Science.

[114]  Philip L. F. Johnson,et al.  Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse , 2013, Nature.

[115]  D. Beaty,et al.  The potential scientific value of returned martian samples: The 2018 iMOST study , 2018 .

[116]  J. Jambor,et al.  Alunite-Jarosite Crystallography, Thermodynamics, and Geochronology , 2000 .

[117]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[118]  T. Kral,et al.  Approaching Mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a smectite clay. , 2010, Astrobiology.

[119]  N. Barlow,et al.  Impact Excavation and the Search for Subsurface Life on Mars , 2002 .

[120]  W. Goetz,et al.  Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils , 2012 .

[121]  M. Madsen,et al.  MOXIE, ISRU, and the History of In Situ Studies of the Hazards of Dust in Human Exploration of Mars , 2017 .

[122]  E. Hauber,et al.  Habitable periglacial landscapes in martian mid-latitudes , 2012 .

[123]  O. Forni,et al.  Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins , 2016 .

[124]  J. Farmer,et al.  Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia. , 1996, Palaios.

[125]  P. Warren Lunar and Martian Meteorite Delivery Services , 1994 .

[126]  M. Zuber,et al.  Sulfur-induced greenhouse warming on early Mars , 2008 .

[127]  J. Grimwood,et al.  A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars , 2010, Science.

[128]  G. C. Greene,et al.  Atmospheric measurements on Mars - The Viking meteorology experiment , 1976 .

[129]  K. Edgett,et al.  Capping Units of the Murray Formation, Gale Crater, Mars: Salsberry Peak as a Pre-Stimson Formation Caprock , 2017 .

[130]  Christopher P. McKay,et al.  Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates , 2011, International Journal of Astrobiology.

[131]  D. Barfod,et al.  A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: Forcing of Quaternary climate and implications for hominin occupation of India , 2014 .

[132]  K. Edgett,et al.  THE STIMSON FORMATION: DETERMINING THE MORPHOLOGY OF A DRY AEOLIAN DUNE SYSTEM AND ITS CLIMATIC SIGNIFICANCE IN GALE CRATER, MARS , 2017 .

[133]  Jeffrey R. Johnson,et al.  Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils , 2008 .

[134]  B. Jones,et al.  Facies architecture in depositional systems resulting from the interaction of acidic springs, alkaline springs, and acidic lakes: case study of Lake Roto-a-Tamaheke, Rotorua, New Zealand , 2012 .

[135]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[136]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[137]  D. Beaty,et al.  The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet , 2017 .

[138]  Craig O'Neill,et al.  Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites , 2009 .

[139]  John F. Mustard,et al.  An in‐situ record of major environmental transitions on early Mars at Northeast Syrtis Major , 2012 .

[140]  M. Zuber,et al.  Meridiani Planum and the global hydrology of Mars , 2007, Nature.

[141]  A. R. Patrício,et al.  luxS in bacteria isolated from 25- to 40-million-year-old amber. , 2014, FEMS microbiology letters.

[142]  Aaron Paz,et al.  An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle , 2017 .

[143]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[144]  E. Vicenzi,et al.  Aqueous processes recorded by martian meteorites : Analyzing martian water on earth , 2006 .

[145]  A. S. Kozyrev,et al.  Soil Water Content on Mars as Estimated from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft , 2004 .

[146]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[147]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[148]  I. Wright,et al.  The carbon cycle on early Earth—and on Mars? , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[149]  D. Sumner,et al.  In a PICL: The sedimentary deposits and facies of perennially ice‐covered lakes , 2018, Sedimentology.

[150]  David W. Beaty,et al.  Sample Science Input to Landing Site Selection for Mars 2020: An In-Situ Exploration and Sample Caching Rover , 2015 .

[151]  Richard A. Mathies,et al.  Sulfate minerals and organic compounds on Mars , 2006 .

[152]  J. Head,et al.  Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology , 2008 .

[153]  W. S. Silver Microbial ecology. , 1967, Science.

[154]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[155]  M. Johnsson The system controlling the composition of clastic sediments , 1993 .

[156]  K. Nishiizumi,et al.  Two billion years of magmatism recorded from a single Mars meteorite ejection site , 2017, Science Advances.

[157]  Raymond E. Arvidson,et al.  Ground ice at the Phoenix Landing Site: Stability state and origin , 2009 .

[158]  L. Weyrich,et al.  Reply to Santiago-Rodriguez et al.: Was luxS really isolated from 25- to 40-million-year-old bacteria? , 2014, FEMS Microbiology Letters.

[159]  R. Pepin On the Isotopic Composition of Primordial Xenon in Terrestrial Planet Atmospheres , 2000 .

[160]  Andrew Steele,et al.  Observations from a 4-year contamination study of a sample depth profile through Martian meteorite Nakhla. , 2007, Astrobiology.

[161]  Elke Rabbow,et al.  Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station. , 2015, Astrobiology.

[162]  K. Campbell,et al.  Abiotic–biotic controls on the origin and development of spicular sinter: in situ growth experiments, Champagne Pool, Waiotapu, New Zealand , 2005 .

[163]  B. Jones,et al.  Hot spring sinters: keys to understanding Earth's earliest life forms , 2003 .

[164]  J. Lunine,et al.  Incorporation of argon, krypton and xenon into clathrates on Mars , 2009 .

[165]  J. Lovelock,et al.  Thermodynamics and the recognition of alien biospheres , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[166]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[167]  J. Farmer Hydrothermal systems: Doorways to early biosphere evolution , 2000 .

[168]  D. Moser Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa , 1997 .

[169]  S. Murchie,et al.  Orbital evidence for more widespread carbonate‐bearing rocks on Mars , 2016 .

[170]  J. Darling,et al.  Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon , 2013, Nature.

[171]  T. Swindle Martian noble gases , 2002 .

[172]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[173]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[174]  A. Morbidelli A coherent and comprehensive model of the evolution of the outer Solar System , 2010, 1010.6221.

[175]  Tilman Spohn,et al.  Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days , 2014 .

[176]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[177]  C. Allen,et al.  Mars Returned Sample Science: Scientific Planning Related to Sample Quality , 2014 .

[178]  池田 安隆,et al.  Sedimentary Rocks , 2019, Dictionary of Geotourism.

[179]  W. Fischer,et al.  Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars , 2010 .

[180]  B. Rasmussen,et al.  Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit , 2000, Nature.

[181]  P. Vermeesch How many grains are needed for a provenance study , 2004 .

[182]  A. Treiman The nakhlite meteorites: Augite-rich igneous rocks from Mars , 2005 .

[183]  F. McCubbin,et al.  Alkalic parental magmas for chassignites? , 2007 .

[184]  L. Borg,et al.  Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites , 2016 .

[185]  D. Ming,et al.  Redox stratification of an ancient lake in Gale crater, Mars , 2017, Science.

[186]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[187]  R. Milliken,et al.  Sources and sinks of clay minerals on Mars , 2010 .

[188]  U. Ott Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny , 1988 .

[189]  D. Lowe,et al.  Early Archean silicate spherules of probable impact origin, South Africa and Western Australia , 1986 .

[190]  Feng Chen,et al.  Sequencing and Analysis of Neanderthal Genomic DNA , 2006, Science.

[191]  Manish R. Patel,et al.  Influence of mineralogy on the preservation of amino acids under simulated Mars conditions , 2016 .

[192]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[193]  J. Porcher,et al.  In vivo experimental model for silicosis. , 2000, Journal of Environmental Pathology And Toxicology.

[194]  Crispin T. S. Little,et al.  Evidence for early life in Earth’s oldest hydrothermal vent precipitates , 2017, Nature.

[195]  G. Osinski,et al.  Enigmatic tubular features in impact glass , 2014 .

[196]  T. Kral,et al.  Methanogen survival following exposure to desiccation, low pressure and martian regolith analogs , 2013 .

[197]  S. Atreya,et al.  Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results. , 2016, Astrobiology.

[198]  P. Taylor Impact of space flight on bacterial virulence and antibiotic susceptibility , 2015, Infection and drug resistance.

[199]  A. Steele,et al.  Critical testing of Earth's oldest putative fossil assemblage from the ∼3.5Ga Apex chert, Chinaman Creek, Western Australia , 2005 .

[200]  G. J. Taylor,et al.  The bulk composition of Mars , 2013 .

[201]  I. Matsuyama,et al.  Late Tharsis formation and implications for early Mars , 2016, Nature.

[202]  M. Thiemens,et al.  Atmosphere-surface interactions on Mars: delta 17O measurements of carbonate from ALH 84001. , 1998, Science.

[203]  David W. Beaty,et al.  Science Priorities for Mars Sample Return , 2008 .

[204]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[205]  Jean-Pierre Bibring,et al.  Widespread surface weathering on early Mars: A case for a warmer and wetter climate , 2015 .

[206]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[207]  John F. Mustard,et al.  Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus , 2012 .

[208]  N. Bridges,et al.  Characteristics of the Pathfinder APXS sites: Implications for the composition of Martian rocks and soils , 2001 .

[209]  G. Etiope Methane origin in the Samail ophiolite: Comment on “Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability” [Geochim. Cosmochim. Acta 179 (2016) 217–241] , 2017 .

[210]  M. Bhatia Plate Tectonics and Geochemical Composition of Sandstones , 1983, The Journal of Geology.

[211]  S. Foote,et al.  Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1 , 2013, The ISME Journal.

[212]  M. Hirschmann,et al.  CO2 solubility in Martian basalts and Martian atmospheric evolution , 2011 .

[213]  K. Nealson,et al.  Iron isotope biosignatures. , 1999, Science.

[214]  R. M. Wheeler HORTICULTURE FOR MARS , 2004 .

[215]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[216]  B. Ehlmann,et al.  Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars , 2017, Nature Communications.

[217]  F. Kondrashov,et al.  Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions , 2015 .

[218]  N. Fierer,et al.  Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability , 2016 .

[219]  J. Wiederhold Metal stable isotope signatures as tracers in environmental geochemistry. , 2015, Environmental science & technology.

[220]  P. Swart The geochemistry of carbonate diagenesis: The past, present and future , 2015 .

[221]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[222]  C. Agee,et al.  Modern atmospheric signatures in 4.4 Ga Martian meteorite NWA 7034 , 2014 .

[223]  A. Steele,et al.  Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources , 2016 .

[224]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[225]  S. Murty,et al.  NITROGEN AND HEAVY NOBLE GASES IN ALH 84001 : SIGNATURES OF ANCIENT MARTIAN ATMOSPHERE , 1997 .

[226]  J. R. O'neil,et al.  The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States , 1969 .

[227]  James E. Johnson,et al.  Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report , 2015 .

[228]  David S. F. Portree,et al.  Humans to Mars: Fifty Years of Mission Planning, 1950 - 2000 , 2012 .

[229]  D. Montgomery,et al.  The dual nature of the martian crust: Young lavas and old clastic materials , 2013 .

[230]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[231]  D. Ming,et al.  The Sample Analysis at Mars Investigation and Instrument Suite , 2012 .

[232]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[233]  Alfred S. McEwen,et al.  Spectral evidence for hydrated salts in recurring slope lineae on Mars , 2015 .

[234]  B. Weiss,et al.  Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites , 2010 .

[235]  J. Jones Various aspects of the petrogenesis of the Martian shergottite meteorites , 2015 .

[236]  J. Elsila,et al.  Carbon isotopic fractionation in Fischer‐Tropsch‐type reactions and relevance to meteorite organics , 2012 .

[237]  A. McEwen,et al.  Transient liquid water and water activity at Gale crater on Mars , 2015 .

[238]  Linda C. Kah,et al.  Shaler: in situ analysis of a fluvial sedimentary deposit on Mars , 2018 .

[239]  C. McKay,et al.  Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars , 2011 .

[240]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[241]  A. McEwen,et al.  An impact origin for hydrated silicates on Mars: A synthesis , 2013 .

[242]  Satoshi Nakagawa,et al.  Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation , 2008, Proceedings of the National Academy of Sciences.

[243]  D. Ming,et al.  Large sulfur isotope fractionations in Martian sediments at Gale crater , 2017 .

[244]  Ram Veerapaneni,et al.  Microbial Analyses of Ancient Ice Core Sections from Greenland and Antarctica , 2013, Biology.

[245]  D. D. Des Marais,et al.  Biosignature Preservation and Detection in Mars Analog Environments , 2017, Astrobiology.

[246]  R. Bowden,et al.  A Reduced Organic Carbon Component in Martian Basalts , 2012, Science.

[247]  R. Jaumann,et al.  Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[248]  E. Vicenzi,et al.  Short- and long-term olivine weathering in Svalbard: implications for Mars. , 2008, Astrobiology.

[249]  Samuel P. Kounaves,et al.  Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics , 2014 .

[250]  D. Moser,et al.  Evaluating baddeleyite oxygen isotope analysis by secondary ion mass spectrometry (SIMS) , 2018 .

[251]  C P McKay,et al.  Discovery of large conical stromatolites in Lake Untersee, Antarctica , 2011, Geobiology.

[252]  T. Egli,et al.  Cultivation-independent assessment of bacterial viability. , 2011, Advances in biochemical engineering/biotechnology.

[253]  K. Kelts Environments of deposition of lacustrine petroleum source rocks: an introduction , 1988, Geological Society, London, Special Publications.

[254]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[255]  B. Jones,et al.  Microstructural changes accompanying the opal‐A to opal‐CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland , 2007 .

[256]  William S. Curran,et al.  A/I: a synthesis , 1982, ACM-SE 20.

[257]  Rolf B. Pedersen,et al.  Diversity of life in ocean floor basalt , 2001 .

[258]  William R. Dickinson,et al.  Interpreting detrital modes of graywacke and arkose , 1970 .

[259]  A. Knoll,et al.  The Meaning of Stromatolites , 2013 .

[260]  David C. Smith,et al.  Global distribution of microbial abundance and biomass in subseafloor sediment , 2012, Proceedings of the National Academy of Sciences.

[261]  Jeffrey R. Johnson,et al.  Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars , 2016 .

[262]  S. Marchi,et al.  The timeline of the lunar bombardment: Revisited , 2018, 1801.03756.

[263]  R. Sillitoe Epithermal paleosurfaces , 2015, Mineralium Deposita.

[264]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[265]  Z. Martins In situ biomarkers and the Life Marker Chip , 2011 .

[266]  U. Ring,et al.  Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite , 2018 .

[267]  J. Amend,et al.  Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA , 2014, Front. Microbiol..

[268]  L. E. Nyquist,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[269]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[270]  S. Schwenzer,et al.  Evaluating Kr- and Xe-data in the nakhlites and ALHA 84001: Does EFA hide EFM? , 2006 .

[271]  T. Grove,et al.  Early hydrous melting and degassing of the Martian interior , 2006 .

[272]  A. Jakus,et al.  Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks , 2017, Scientific Reports.

[273]  J L Bada,et al.  Detecting amino acids on Mars. , 1996, Analytical chemistry.

[274]  I. Walker From the Origins , 2019, Islands in a Cosmopolitan Sea.

[275]  Sheila A. Thibeault,et al.  Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays , 1998 .

[276]  R. Popa ◾ Elusive Definition of Life: A Survey of Main Ideas , 2014 .

[277]  R. Summons,et al.  Organic geochemical signatures of early life on earth , 2014 .

[278]  A. Navarre‐Sitchler,et al.  Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast , 2009 .

[279]  G. Domokos,et al.  Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust , 2016 .

[280]  T. Encrenaz,et al.  Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs , 2015, Science.

[281]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[282]  N. Fierer,et al.  Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman , 2017, Front. Microbiol..

[283]  P. Ehrenfreund,et al.  The Significance of Microbe-Mineral-Biomarker Interactions in the Detection of Life on Mars and Beyond. , 2015, Astrobiology.

[284]  Samuel P. Kounaves,et al.  Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications , 2014 .

[285]  J. Mustard,et al.  Origin and Emplacement of the Circum-Isidis Olivine-Rich Unit , 2018 .

[286]  A. Hofmann,et al.  Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks , 2018, Geochimica et Cosmochimica Acta.

[287]  D. Ming,et al.  Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars , 2016 .

[288]  D. Ming,et al.  Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars , 2018, Earth and Planetary Science Letters.

[289]  Judith H. Allton,et al.  Curating NASA's Extraterrestrial Samples - Past, Present, and Future , 2011 .

[290]  T. Kral,et al.  Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars , 2016 .

[291]  J. Dohm,et al.  Evidence for Hesperian impact-induced hydrothermalism on Mars , 2010 .

[292]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[293]  G. Rossman,et al.  Theoretical Estimates of Equilibrium Chlorine Isotope Fractionations , 2003 .

[294]  D. Ming,et al.  Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars , 2018, American Mineralogist.

[295]  O. Forni,et al.  Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars , 2017 .

[296]  John H. Jones,et al.  Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss , 2013, Geophysical research letters.

[297]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[298]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[299]  K. Herkenhoff,et al.  Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rov , 2011 .

[300]  L. Edwards,et al.  Impact Damage to Dinocysts from the Late Eocene Chesapeake Bay Event , 2003 .

[301]  S. Squyres,et al.  Terrigenous Clastic Sedimentation in Antarctic Dry Valley Lakes , 2013 .

[302]  K. Mathew,et al.  Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny , 2001 .

[303]  K. Campbell,et al.  Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand , 2014 .

[304]  Van Krevelen,et al.  Graphical-statistical method for the study of structure and reaction processes of coal , 1950 .

[305]  Michael Y. Galperin,et al.  Origin of first cells at terrestrial, anoxic geothermal fields , 2012, Proceedings of the National Academy of Sciences.

[306]  M. Hughes,et al.  Sediment Transport , 2021, Reference Module in Earth Systems and Environmental Sciences.

[307]  J. Watson,et al.  Sulfate Minerals: A Problem for the Detection of Organic Compounds on Mars? , 2015, Astrobiology.

[308]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[309]  R. Bevins,et al.  Low Grade Metamorphism , 1992 .

[310]  S. Airieau,et al.  Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere , 2001 .

[311]  B. Hong,et al.  Sedimentology of Acid Saline Lakes in Southern Western Australia: Newly Described Processes and Products of an Extreme Environment , 2007 .

[312]  J. Drever,et al.  Geochemistry and diagenesis of deep-sea sediments from leg 35 of the Deep Sea Drilling Project , 1976, Nature.

[313]  H. Melosh,et al.  Martian Meteorite Launch: High-Speed Ejecta from Small Craters , 2002, Science.

[314]  P. Falkowski,et al.  Metal availability and the expanding network of microbial metabolisms in the Archaean eon , 2017 .

[315]  William H. Farrand,et al.  Detection of copiapite in the northern Mawrth Vallis region of Mars: Evidence of acid sulfate alteration , 2014 .

[316]  Christopher P McKay,et al.  Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica , 2016, The ISME Journal.

[317]  J. Bishop,et al.  Subsurface Salts in Antarctic Dry Valley Soils , 2013 .

[318]  T. Encrenaz,et al.  Coupled Surface-Atmosphere Chemistry of the Martian Peroxide and Perchlorate Oxidants , 2017 .

[319]  Mary H. Dickson,et al.  What is Geothermal Energy? , 2018, Renewable Energy.

[320]  A. Steele,et al.  The provenance, formation, and implications of reduced carbon phases in Martian meteorites , 2016 .

[321]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[322]  F. Poulet,et al.  Late Hesperian aqueous alteration at Majuro crater, Mars , 2012 .

[323]  A. Navarre‐Sitchler,et al.  Soil profiles as indicators of mineral weathering rates and organic interactions for a Pennsylvania diabase , 2011 .

[324]  R. Hazen,et al.  Shielding biomolecules from effects of radiation by Mars analogue minerals and soils , 2016, International Journal of Astrobiology.

[325]  Kenneth L. Tanaka Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars , 1997 .

[326]  K. N. Dollman,et al.  - 1 , 1743 .

[327]  T. Vishnivetskaya,et al.  Microbial Communities in Subpermafrost Saline Fracture Water at the Lupin Au Mine, Nunavut, Canada , 2009, Microbial Ecology.

[328]  D. Ming,et al.  The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars , 2015, The American mineralogist.

[329]  Rebecca J. Thomas,et al.  Large‐scale fluid‐deposited mineralization in Margaritifer Terra, Mars , 2017 .

[330]  Kai Chen Temperature excursions during regeneration of diesel particulate filters , 2010 .

[331]  A. Steele,et al.  Investigations into an unknown organism on the martian meteorite Allan Hills 84001 , 2000, Meteoritics & planetary science.

[332]  Zita Martins,et al.  Type IV kerogens as analogues for organic macromolecular materials in aqueously altered carbonaceous chondrites. , 2013, Astrobiology.

[333]  Maarten G. Kleinhans,et al.  Martian stepped-delta formation by rapid water release , 2008, Nature.

[334]  E. Cloutis,et al.  Acidic weathering of basalt and basaltic glass: 1. Near‐infrared spectra, thermal infrared spectra, and implications for Mars , 2017 .

[335]  J. Watson,et al.  Perchlorate‐induced combustion of organic matter with variable molecular weights: Implications for Mars missions , 2014 .

[336]  J. Head MARS CLIMATE HISTORY : A GEOLOGICAL PERSPECTIVE , 2016 .

[337]  C. Quantin,et al.  Stratigraphic architectures spotted in southern Melas Chasma, Valles Marineris, Mars , 2007 .

[338]  L. T. Kurtz,et al.  Soils and Soil Fertility , 1973 .

[339]  O. Tschauner,et al.  Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation , 2015 .

[340]  A. McEwen,et al.  Exposed subsurface ice sheets in the Martian mid-latitudes , 2018, Science.

[341]  J. Farmer,et al.  Thermal Springs and the Search for Past Life on Mars , 1995 .

[342]  Frances Westall,et al.  Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth ’ s atmosphere : the STONE 6 experiment , 2012 .

[343]  S. Brantley,et al.  Rates of weathering rind formation on Costa Rican basalt , 2004 .

[344]  Jeremy Jones Isotopic relationships among the shergottites, the nakhlites and Chassigny , 1989 .

[345]  H. Klein The Viking biological experiments on Mars , 1978 .

[346]  K. Campbell,et al.  Silicifying biofilm exopolymers on a hot-spring microstromatolite: templating nanometer-thick laminae. , 2008, Astrobiology.

[347]  F. Prahl,et al.  Sorptive preservation of labile organic matter in marine sediments , 1994, Nature.

[348]  Mary A. Voytek,et al.  Report of the workshop for life detection in samples from Mars , 2014 .

[349]  B. Jakosky,et al.  Mars atmosphere loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape , 1994 .

[350]  Patrick Pinet,et al.  In situ evidence for continental crust on early Mars , 2015 .

[351]  J. Bishop,et al.  Chemically Active Horizon in a Soil Pit from an Intermittent Pond Site in the Dry Valleys Region, Antarctica and Implications for Soil Processes on Mars , 2018 .

[352]  R. Summons,et al.  Sedimentary Hydrocarbons, Biomarkers for Early Life , 2003 .

[353]  J. Brucato,et al.  Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces , 2013 .

[354]  A.C.D. Leslie,et al.  Mitigation of the impacts of electric power genertion , 1995 .

[355]  Virginia C. Gulick,et al.  Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars , 1998 .

[356]  E. Trembath-Reichert,et al.  Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds , 2017, Proceedings of the National Academy of Sciences.

[357]  Jeffrey R. Johnson,et al.  VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers , 2016 .

[358]  S. Ruff,et al.  TESTING ALTERNATIVE HYPOTHESES FOR THE ORIGIN OF HYDROTHERMAL SILICA AT HOME PLATE, MARS WITH IMPLICATIONS FOR ASTROBIOLOGY , 2018 .

[359]  K. Harrison,et al.  On the secular retention of ground water and ice on Mars , 2017 .

[360]  John F. Mustard,et al.  Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars , 2010 .

[361]  A. Treiman,et al.  Experimental petrology, crystallization history, and parental magma characteristics of olivine‐phyric shergottite NWA 1068: Implications for the petrogenesis of “enriched” olivine‐phyric shergottites , 2010 .

[362]  K. Benison,et al.  Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? , 2003, Astrobiology.

[363]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[364]  J. Hayes Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic Processes , 2001 .

[365]  Nathan T. Bridges,et al.  The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue , 2018 .

[366]  S. Killops,et al.  Introduction to Organic Geochemistry: Killops/Introduction to Organic Geochemistry , 2004 .

[367]  Kenneth L. Tanaka,et al.  A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). , 2014, Astrobiology.

[368]  M. Thiemens,et al.  Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere , 2014, Proceedings of the National Academy of Sciences.

[369]  D. desmarais,et al.  Biogeochemical Cycles of Carbon and Sulfur , 2002 .

[370]  M. Bowen,et al.  Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. , 2009, Journal of microbiological methods.

[371]  M. Skidmore,et al.  Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. , 2014, FEMS microbiology ecology.

[372]  A. McEwen,et al.  Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water , 2017, Nature Geoscience.

[373]  G. Landis Materials refining on the Moon , 2007 .

[374]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[375]  C. Agee,et al.  The early differentiation of Mars inferred from Hf–W chronometry , 2017 .

[376]  G. Wasserburg,et al.  Sm-Nd and Rb-Sr Chronology of Continental Crust Formation , 1978, Science.

[377]  C. Herd The oxygen fugacity of olivine‐phyric martian basalts and the components within the mantle and crust of Mars , 2003 .

[378]  J. Grant,et al.  Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars , 2008 .

[379]  W. Dietrich,et al.  On the in situ aqueous alteration of soils on Mars , 2008 .

[380]  Nicolas Thomas,et al.  Seasonal Flows on Warm Martian Slopes , 2011, Science.

[381]  Janice L. Bishop,et al.  History of the clay‐rich unit at Mawrth Vallis, Mars: High‐resolution mapping of a candidate landing site , 2015 .

[382]  W. B. Whalley Scanning electron microscopy in the study of sediments , 1978 .

[383]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[384]  T. Pupko,et al.  The Permian bacterium that isn't. , 2001, Molecular biology and evolution.

[385]  Malcolm R. Walter,et al.  Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits , 2017, Nature Communications.

[386]  J. Head,et al.  Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration , 2017 .

[387]  S. Murchie,et al.  Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars , 2011 .

[388]  C. Johnson,et al.  The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective , 2018, Earth and Space Science.

[389]  A. McEwen,et al.  Fracture-Controlled Paleo-Fluid Flow in Candor Chasma, Mars , 2007, Science.

[390]  D. Draper,et al.  Anhydrous liquid line of descent of Yamato‐980459 and evolution of Martian parental magmas , 2013 .

[391]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[392]  H. D. Holland,et al.  Life associated with a 2.76 Ga ephemeral pond?: evidence from Mount Roe #2 paleosol. , 2000, Geology.

[393]  A. Treiman,et al.  Martian magmas contained abundant chlorine, but little water , 2009 .

[394]  A. Rivoldini,et al.  A Geophysical Perspective on the Bulk Composition of Mars , 2017 .

[395]  D. Ming,et al.  Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils , 2014 .