Nonlinear vibration analysis of functionally graded material tubes with conveying fluid resting on elastic foundation by a new tubular beam model

[1]  Xian‐Fang Li,et al.  A refined beam theory for bending and vibration of functionally graded tube-beams , 2020 .

[2]  Lin Wang,et al.  Planar and non-planar vibrations of a fluid-conveying cantilevered pipe subjected to axial base excitation , 2020 .

[3]  Fangqi Chen,et al.  Multi-pulse jumping orbits and chaotic dynamics of cantilevered pipes conveying time-varying fluid , 2019, Nonlinear Dynamics.

[4]  M. Duan,et al.  Effect of Aspect Ratio on the Dynamic Response of a Fluid-conveying Pipe Using the Timoshenko Beam Model , 2016 .

[5]  Zhong-Min Wang,et al.  Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method , 2016 .

[6]  Hui‐Shen Shen Nonlinear thermal bending of FGM cylindrical panels resting on elastic foundations under heat conduction , 2014 .

[7]  Hui-Shen Shen,et al.  Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments , 2014 .

[8]  M. Païdoussis Fluid-Structure Interactions: Slender Structures and Axial Flow , 2014 .

[9]  H. Dai,et al.  Nonlinear dynamic behavior of a long temperature-dependent FGM hollow cylinder subjected to thermal shocking , 2014 .

[10]  P. Malekzadeh,et al.  Three-dimensional free vibration analysis of functionally graded cylindrical panels with cut-out using Chebyshev–Ritz method , 2013 .

[11]  Jaehong Lee,et al.  A new laminated composite beam element based on eigenvalue problem , 2013 .

[12]  Pu Zhang,et al.  A higher-order beam model for tubes , 2013 .

[13]  Y. Huang,et al.  Higher-order theory for bending and vibration of beams with circular cross section , 2013 .

[14]  M. Vaghefi,et al.  Transient response of rotating laminated functionally graded cylindrical shells in thermal environment , 2012 .

[15]  Hui-Shen Shen,et al.  Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates , 2012 .

[16]  Jie Yang,et al.  Nonlinear free vibration of size-dependent functionally graded microbeams , 2012 .

[17]  Gaetano Giunta,et al.  Beam Structures: Classical and Advanced Theories , 2011 .

[18]  Suong V. Hoa,et al.  On bending stiffness of composite tubes , 2011 .

[19]  Yongshou Liu,et al.  Dynamic response of pipeline conveying fluid to random excitation , 2011 .

[20]  M. Asgari,et al.  Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations , 2011 .

[21]  Xian‐Fang Li,et al.  Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity , 2010 .

[22]  A. R. Vosoughi,et al.  DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges , 2009 .

[23]  L. Wang,et al.  LARGE-AMPLITUDE FREE VIBRATIONS OF FLUID-CONVEYING PIPES ON A PASTERNAK FOUNDATION , 2008 .

[24]  Hui‐Shen Shen,et al.  Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment , 2008 .

[25]  V. Iu,et al.  Three-dimensional vibration analysis of functionally graded material sandwich plates , 2008 .

[26]  M. P. Paı¨doussis The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics , 2008 .

[27]  Serge Abrate,et al.  Free vibration, buckling, and static deflections of functionally graded plates , 2006 .

[28]  M. Ganapathi,et al.  Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method , 2006 .

[29]  I. Elishakoff,et al.  Forced Vibrations of Functionally Graded Plates in the Three-Dimensional Setting , 2005 .

[30]  Young-Wann Kim,et al.  TEMPERATURE DEPENDENT VIBRATION ANALYSIS OF FUNCTIONALLY GRADED RECTANGULAR PLATES , 2005 .

[31]  S. Vel,et al.  Three-dimensional exact solution for the vibration of functionally graded rectangular plates , 2004 .

[32]  J. N. Reddy,et al.  Frequency of Functionally Graded Plates with Three-Dimensional Asymptotic Approach , 2003 .

[33]  Hui-Shen Shen,et al.  VIBRATION CHARACTERISTICS AND TRANSIENT RESPONSE OF SHEAR-DEFORMABLE FUNCTIONALLY GRADED PLATES IN THERMAL ENVIRONMENTS , 2002 .

[34]  Hui-Shen Shen,et al.  Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments , 2002 .

[35]  Hui-Shen Shen,et al.  Dynamic response of initially stressed functionally graded rectangular thin plates , 2001 .

[36]  J. Reddy Analysis of functionally graded plates , 2000 .

[37]  J. N. Reddy,et al.  Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates , 1998 .

[38]  Subra Suresh,et al.  Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour , 1997 .

[39]  G. X. Li,et al.  The Non-linear Equations of Motion of Pipes Conveying Fluid , 1994 .

[40]  M. P. Païdoussis,et al.  Dynamics of finite-length tubular beams conveying fluid , 1986 .

[41]  G. Gladwell,et al.  Elastic Analysis of Soil-Foundation Interaction , 1979 .

[42]  B. E. Laithier,et al.  Dynamics of Timoshenko Beams Conveying Fluid , 1976 .

[43]  M. Païdoussis,et al.  Dynamic stability of pipes conveying fluid , 1974 .

[44]  Michael P. Païdoussis,et al.  Dynamics of Tubular Cantilevers Conveying Fluid , 1970 .

[45]  C. D. Mote,et al.  Nonlinear Oscillation of a Cylinder Containing a Flowing Fluid , 1969 .

[46]  M. Païdoussis,et al.  Unstable oscillation of tubular cantilevers conveying fluid I. Theory , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  M. P. Paidoussis,et al.  Unstable oscillation of tubular cantilevers conveying fluid II. Experiments , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Thomas Brooke Benjamin,et al.  Dynamics of a system of articulated pipes conveying fluid - I.Theory , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  Thomas Brooke Benjamin,et al.  Dynamics of a system of articulated pipes conveying fluid - II. Experiments , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.