Tensor Deflation for CANDECOMP/PARAFAC— Part II: Initialization and Error Analysis
暂无分享,去创建一个
[1] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[2] Johan Wagemans,et al. Single trial ERP reading based on parallel factor analysis. , 2013, Psychophysiology.
[3] A. Stegeman,et al. On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model , 2008, Psychometrika.
[4] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[5] Arye Nehorai,et al. Concentrated Cramer-Rao bound expressions , 1994, IEEE Trans. Inf. Theory.
[6] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..
[7] Alwin Stegeman,et al. Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms , 2012, SIAM J. Matrix Anal. Appl..
[8] Nikos D. Sidiropoulos,et al. Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..
[9] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm , 2015, IEEE Transactions on Signal Processing.
[10] Andrzej Cichocki,et al. CANDECOMP/PARAFAC Decomposition of High-Order Tensors Through Tensor Reshaping , 2012, IEEE Transactions on Signal Processing.
[11] Andrzej Cichocki,et al. Deflation method for CANDECOMP/PARAFAC tensor decomposition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[12] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[13] T. Moore. A Theory of Cramer-Rao Bounds for Constrained Parametric Models , 2010 .
[14] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting , 2015, ArXiv.
[15] Andrzej Cichocki,et al. Tensor diagonalization - a new tool for PARAFAC and block-term decomposition , 2014, ArXiv.
[16] Daniel Graupe,et al. Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition , 2005, Brain Topography.
[17] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[18] Zbynek Koldovský,et al. Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.
[19] B. Kowalski,et al. Tensorial resolution: A direct trilinear decomposition , 1990 .