Submillimeter-Wave Radar: Solid-State System Design and Applications

For decades, the principal role of microwave engineering techniques in the submillimeter (submm)-wave, or terahertz (THz), regime, spanning about 300 GHz-3 THz, has been to optimize the performance of components and systems used in molecular spectroscopy measurements for astronomy, earth science, and plasma diagnostics [1]. THz applications beyond spectroscopy have been much slower to develop. Ultrahigh bandwidth communication at THz frequencies may have the most powerful market forces to support it, but no systems have been deployed beyond the prototype stage, likely because of the unavailability of commercial submm-wave components, challenges with integrating them with existing communications hardware, and the often severe atmospheric attenuation.

[1]  P. Siegel Terahertz Technology , 2001 .

[2]  Gopal Narayanan,et al.  SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz Atmospheric Window , 2009 .

[3]  Zhiwei Xu,et al.  A 144GHz 0.76cm-resolution sub-carrier SAR phase radar for 3D imaging in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[4]  Ken B. Cooper,et al.  Integrated 200–240-GHz FMCW Radar Transceiver Module , 2013, IEEE Transactions on Microwave Theory and Techniques.

[5]  Jesus Grajal,et al.  Experimental radar imager with sub-cm range resolution at 300 GHz , 2013, 2013 IEEE Radar Conference (RadarCon13).

[6]  Cun Lin Zhang,et al.  Experimental 0.22 THz Stepped Frequency Radar System for ISAR Imaging , 2014 .

[7]  V. Krozer,et al.  THz Active Imaging Systems With Real-Time Capabilities , 2011, IEEE Transactions on Terahertz Science and Technology.

[8]  Jri Lee,et al.  A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[9]  Duncan A. Robertson,et al.  340-GHz 3D radar imaging test bed with 10-Hz frame rate , 2012, Defense + Commercial Sensing.

[10]  B. Litvak,et al.  330 GHz FMCW Image Sensor for Homeland Security Applications , 2010 .

[11]  Nuria Llombart,et al.  A Grating-Based Circular Polarization Duplexer for Submillimeter-Wave Transceivers , 2012, IEEE Microwave and Wireless Components Letters.

[12]  Nuria Llombart,et al.  Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager , 2010, IEEE Transactions on Antennas and Propagation.

[13]  Ken B. Cooper,et al.  Residual phase noise and transmit/receive isolation in a submillimeter-wave FMCW radar , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[14]  H Zirath,et al.  Single-Chip 220-GHz Active Heterodyne Receiver and Transmitter MMICs With On-Chip Integrated Antenna , 2011, IEEE Transactions on Microwave Theory and Techniques.

[15]  K. B. Cooper,et al.  Carrier noise-limited penetration in THz radar imaging , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[16]  Goutam Chattopadhyay,et al.  A High-Power 105–120 GHz Broadband On-Chip Power-Combined Frequency Tripler , 2015, IEEE Microwave and Wireless Components Letters.

[17]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[18]  L. Samoska An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime , 2011, IEEE Transactions on Terahertz Science and Technology.

[19]  V. Radisic,et al.  THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors , 2011, IEEE Transactions on Terahertz Science and Technology.

[20]  Nuria Llombart,et al.  A Bifocal Ellipsoidal Gregorian Reflector System for THz Imaging Applications , 2012, IEEE Transactions on Antennas and Propagation.

[21]  Lorenz-Peter Schmidt,et al.  A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array , 2011, IEEE Transactions on Microwave Theory and Techniques.

[22]  O. Ambacher,et al.  Signal generation and amplification up to 600 GHz using metamorphic HEMT technology , 2013, 2013 European Microwave Integrated Circuit Conference.

[23]  B.G. Danly,et al.  WARLOC: A high-power coherent 94 GHz radar , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Goutam Chattopadhyay,et al.  Transceiver array development for submillimeter-wave imaging radars , 2013, Defense, Security, and Sensing.

[25]  Jorge A. Ruiz-Cruz,et al.  Compact Duplexing for a 680-GHz Radar Using a Waveguide Orthomode Transducer , 2014, IEEE Transactions on Microwave Theory and Techniques.

[26]  Viktor Krozer,et al.  300 GHz Imaging System with 8 Meter Stand-off Distance and One-Dimensional Synthetic Image Reconstruction for Remote Detection of Material Defects , 2011 .

[27]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[28]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[29]  Goutam Chattopadhyay,et al.  Array technology for terahertz imaging , 2012, Defense + Commercial Sensing.

[30]  Duncan A. Robertson,et al.  Concealed threat detection with the IRAD sub-millimeter wave 3D imaging radar , 2014, Defense + Security Symposium.

[31]  Nuria Llombart,et al.  THz Imaging Radar for Standoff Personnel Screening , 2011, IEEE Transactions on Terahertz Science and Technology.

[32]  G. Chattopadhyay,et al.  Technology, Capabilities, and Performance of Low Power Terahertz Sources , 2011, IEEE Transactions on Terahertz Science and Technology.

[33]  Gabriel M. Rebeiz,et al.  A 108–114 GHz 4 $\,\times\,$4 Wafer-Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[34]  Patrick Lj Valdez,et al.  Standoff concealed weapon detection using a 350-GHz radar imaging system , 2010, Defense + Commercial Sensing.

[35]  H. Essen,et al.  High resolution millimetre wave measurement radars for ground based SAR and ISAR imaging , 2008, 2008 IEEE Radar Conference.

[36]  B. Kapilevich,et al.  Detecting power lines using 330GHz FMCW sensor , 2011, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011).

[37]  Torsten Loffler,et al.  3D-terahertz-tomography for material inspection and security , 2009, 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves.

[38]  Jri Lee,et al.  A 94GHz 3D-image radar engine with 4TX/4RX beamforming scan technique in 65nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[39]  T. Goyette,et al.  High Resolution Imaging using 325 GHz and 1 . 5 THz Transceivers , 2004 .

[40]  Munkyo Seo,et al.  InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz , 2011, IEEE Journal of Solid-State Circuits.

[41]  J. R. Montejo-Garai,et al.  A 225 GHz Circular Polarization Waveguide Duplexer Based on a Septum Orthomode Transducer Polarizer , 2013, IEEE Transactions on Terahertz Science and Technology.

[42]  Chialin Wu,et al.  Cloud profiling radar for the CloudSat mission , 2005, IEEE International Radar Conference, 2005..

[43]  Andrew Gerald Stove,et al.  Linear FMCW radar techniques , 1992 .