On Calderon's problem for the connection Laplacian

We consider Calderon's problem for the connection Laplacian on a real-analytic vector bundle over a manifold with boundary. We prove a uniqueness result for this problem when all geometric data are real-analytic, recovering the topology and geometry of a vector bundle up to a gauge transformation and an isometry of the base manifold.

[1]  Ravil Gabdurakhmanov,et al.  On the Dirichlet-to-Neumann operator for the Connection Laplacian , 2021, 2112.13466.

[2]  M. Salo,et al.  The Poisson embedding approach to the Calderón problem , 2018, Mathematische Annalen.

[3]  M. Cekić Calderón problem for connections , 2017 .

[4]  Mihajlo Ceki'c Calderón problem for Yang–Mills connections , 2017, Journal of Spectral Theory.

[5]  M. Salo,et al.  The Calderón problem for the conformal Laplacian , 2016, Communications in Analysis and Geometry.

[6]  Mihajlo Ceki'c The Calder\'on problem for connections , 2016, 1610.02985.

[7]  Lauri Oksanen,et al.  Inverse problems for the connection Laplacian , 2015, Journal of Differential Geometry.

[8]  G. Uhlmann,et al.  Inverse Boundary Problems for Systems in Two Dimensions , 2011, Annales Henri Poincaré.

[9]  L. Tzou,et al.  Identification of a Connection from Cauchy Data on a Riemann Surface with Boundary , 2010, 1007.0760.

[10]  C. Kenig,et al.  Limiting Carleman weights and anisotropic inverse problems , 2008, 0803.3508.

[11]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[12]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[13]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[14]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[15]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[16]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[17]  Matti Lassas,et al.  The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  J. Eells,et al.  Selected topics on harmonic maps , 1983 .

[20]  D. E. Edmunds,et al.  INTRODUCTION TO PSEUDODIFFERENTIAL AND FOURIER INTEGRAL OPERATORS VOL. 1: PSEUDODIFFERENTIAL OPERATORS VOL. 2: FOURIER INTEGRAL OPERATORS , 1982 .

[21]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[22]  W. Meyer,et al.  Riemannsche Geometrie im Großen , 1975 .