PEM fuel cell model parameters optimization using modified particle swarm optimization algorithm

This paper proposed a technique to identify Proton Exchange Membrane Fuel Cell (PEMFC)'s parameters using an optimization approach. This paper present the application of particle swarm optimization (PSO) based algorithm known as local optima avoidance particle swarm optimization (LOAPSO) in extracting parameters from PEMFC. The proposed technique is used to identify the PEMFC parameters in term of the voltage-current characteristics. An experimental data from publish literature are used to test and verify the consistency of accurately identifying various parameters.

[1]  Mohammad Bagher Menhaj,et al.  Local Optima Avoidable Particle Swarm Optimization , 2009, 2009 IEEE Swarm Intelligence Symposium.

[2]  V. Dharma Rao,et al.  Parametric sensitivity analysis of PEM fuel cell electrochemical Model , 2011 .

[3]  Azzedine Zerguine,et al.  A new modified particle swarm optimization algorithm for adaptive equalization , 2011, Digit. Signal Process..

[4]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  M.G. Simoes,et al.  Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells , 2005, IEEE Transactions on Energy Conversion.

[6]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .

[7]  N. Jenkins,et al.  Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms , 2004 .

[8]  Michael C. Georgiadis,et al.  On-line nonlinear model predictive control of a PEM fuel cell system , 2013 .

[9]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[10]  Michael C. Georgiadis,et al.  Modelling and explicit model predictive control for PEM fuel cell systems , 2012 .

[11]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[12]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  Qiang Sun,et al.  Impulse Engine Ignition Algorithm Based on Genetic Particle Swarm Optimization , 2013, ICSI.

[14]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.