SAGE: A proposal for a space atomic gravity explorer

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  A. Roura Gravitational Redshift in Quantum-Clock Interferometry , 2018, Physical Review X.

[3]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[4]  Jun Wu,et al.  Identifying multiple vulnerable areas of infrastructure network under global connectivity measure , 2019, International Journal of Modern Physics C.

[5]  W. Ni,et al.  Orbit design for space atom-interferometer AIGSO , 2019, International Journal of Modern Physics D.

[6]  Peng Xu,et al.  ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna , 2019, International Journal of Modern Physics D.

[7]  M. Safronova The Search for Variation of Fundamental Constants with Clocks , 2019, Annalen der Physik.

[8]  S. Abend,et al.  Atomic source selection in space-borne gravitational wave detection , 2018, New Journal of Physics.

[9]  E. Pino,et al.  Intermediate-mass black hole growth and feedback in dwarf galaxies at high redshifts , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  Christoph Günther,et al.  Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit. , 2018, Physical review letters.

[11]  R Prieto-Cerdeira,et al.  Gravitational Redshift Test Using Eccentric Galileo Satellites. , 2018, Physical review letters.

[12]  R. Le Targat,et al.  New bounds on dark matter coupling from a global network of optical atomic clocks , 2018, Science Advances.

[13]  Uwe Sterr,et al.  Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms , 2018, Physical Review A.

[14]  Huaguo Zang,et al.  In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms , 2018, Nature Communications.

[15]  O. Minazzoli,et al.  Violation of the equivalence principle from light scalar dark matter , 2018, Physical Review D.

[16]  Tom Melia,et al.  Detecting dark blobs , 2018, Physical Review D.

[17]  Achim Peters,et al.  Space-borne Bose–Einstein condensation for precision interferometry , 2018, Nature.

[18]  P. Wolf,et al.  First observation with global network of optical atomic clocks aimed for a dark matter detection. , 2018, 1806.04762.

[19]  Paolo Villoresi,et al.  Postselection-Loophole-Free Bell Violation with Genuine Time-Bin Entanglement. , 2018, Physical review letters.

[20]  G. Blewitt,et al.  Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method , 2018, 1803.10264.

[21]  Jürgen Müller,et al.  Relativistic tests with lunar laser ranging , 2018 .

[22]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[23]  M. Merzougui,et al.  Exploring gravity with the MIGA large scale atom interferometer , 2017, Scientific Reports.

[24]  P. Graham,et al.  Search for light scalar dark matter with atomic gravitational wave detectors , 2016, 1606.04541.

[25]  A. Derevianko Detecting dark-matter waves with a network of precision-measurement tools , 2016, 1605.09717.

[26]  Hanns Selig,et al.  MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle. , 2017, Physical review letters.

[27]  M. Zhan,et al.  Atomic Interferometric Gravitational-wave Space Observatory (AIGSO) , 2017, 1711.03690.

[28]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[29]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[30]  Leonardo Salvi,et al.  Atom Interferometry with the Sr Optical Clock Transition. , 2017, Physical review letters.

[31]  M. Norcia,et al.  Role of atoms in atomic gravitational-wave detectors , 2017, 1707.04571.

[32]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[33]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[34]  G. Blewitt,et al.  Search for domain wall dark matter with atomic clocks on board global positioning system satellites , 2017, Nature Communications.

[35]  F. Sorrentino,et al.  Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states , 2017, Nature Communications.

[36]  J. Gair,et al.  Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.

[37]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[38]  R. Ciuryło,et al.  Experimental constraint on dark matter detection with optical atomic clocks , 2016, Nature Astronomy.

[39]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[40]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[41]  R. Ciuryło,et al.  Searching for topological defect dark matter with optical atomic clocks , 2016, 1605.05763.

[42]  A. Geraci,et al.  Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter. , 2016, Physical review letters.

[43]  M. Abgrall,et al.  Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons. , 2016, Physical review letters.

[44]  Atomic clocks and dark-matter signatures , 2016, 1603.07001.

[45]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[46]  S. Chiow,et al.  Noise reduction in differential phase extraction of dual atom interferometers using an active servo loop , 2016 .

[47]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[48]  S. Chiow,et al.  Quantum test of the equivalence principle and space-time aboard the International Space Station , 2015, 1510.07780.

[49]  G. Vallone,et al.  Interference at the Single Photon Level Along Satellite-Ground Channels. , 2015, Physical review letters.

[50]  S. Dimopoulos,et al.  Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors. , 2015, Physical review letters.

[51]  D. Holleville,et al.  Development of a strontium optical lattice clock for the SOC mission on the ISS , 2015, SPIE Photonics Europe.

[52]  Jun Luo,et al.  Test of the Universality of Free Fall with Atoms in Different Spin Orientations. , 2015, Physical review letters.

[53]  Mark A. Kasevich,et al.  Atom interferometric gravitational wave detection using heterodyne laser links , 2015, 1501.06797.

[54]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[55]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[56]  G. Tino,et al.  Large-momentum-transfer Bragg interferometer with strontium atoms , 2015, 1510.07939.

[57]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[58]  Peter Wolf,et al.  Analysis of Sun/Moon gravitational redshift tests with the STE-QUEST space mission , 2015, 1509.02854.

[59]  D. Massonnet,et al.  The ACES/PHARAO space mission , 2015 .

[60]  L. Bougas,et al.  Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy. , 2015, Physical review letters.

[61]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[62]  Nan Yu,et al.  Laser-ranging long-baseline differential atom interferometers for space , 2015, 1502.00047.

[63]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[64]  Paolo Villoresi,et al.  Experimental Satellite Quantum Communications. , 2014, Physical review letters.

[65]  S. Capozziello,et al.  Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.

[66]  O. Montenbruck,et al.  Enhanced solar radiation pressure modeling for Galileo satellites , 2015, Journal of Geodesy.

[67]  C. A. Oxborrow,et al.  Planck 2013 results. XXXI. Consistency of the Planck data , 2014, 1508.03375.

[68]  S. Vogt,et al.  A transportable strontium optical lattice clock , 2014, 1409.4572.

[69]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[70]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[71]  Jun Ye,et al.  Optical atomic clocks , 2014, 1407.3493.

[72]  M. Colpi Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence , 2014, 1407.3102.

[73]  G. Nelemans,et al.  CONSTRAINING PARAMETERS OF WHITE-DWARF BINARIES USING GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS , 2014, 1406.3599.

[74]  A. Moss,et al.  Did BICEP2 see vector modes? First B-mode constraints on cosmic defects. , 2014, Physical review letters.

[75]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[76]  G. Tino,et al.  Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.

[77]  W. Folkner,et al.  Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft , 2014, 1402.6950.

[78]  F. Sorrentino,et al.  Sensitivity limits of a Raman atom interferometer as a gravity gradiometer , 2013, 1312.3741.

[79]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[80]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[81]  J. Silk,et al.  A model for halo formation with axion mixed dark matter , 2013, 1307.1705.

[82]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[83]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[84]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[85]  G. Tino,et al.  Optical atomic clocks , 2013, 1401.2378.

[86]  J. Greene,et al.  DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES , 2013, 1308.0328.

[87]  N. Zahzam,et al.  Simultaneous dual-species matter-wave accelerometer , 2013, 1307.2734.

[88]  M. Kasevich,et al.  New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.

[89]  P. Perez,et al.  The GBAR experiment: gravitational behaviour of antihydrogen at rest , 2012 .

[90]  K. Freese,et al.  Annual Modulation of Dark Matter: A Review , 2012, 1209.3339.

[91]  N. C. Menicucci,et al.  Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities , 2012, 1206.4949.

[92]  Caslav Brukner,et al.  General relativistic effects in quantum interference of photons , 2012, 1206.0965.

[93]  C. Lämmerzahl,et al.  Editorial on the GRG special issue on “Gravitational waves detection with atom interferometry” , 2011 .

[94]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[95]  A. Alberti,et al.  Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. , 2010, Physical review letters.

[96]  Nan Yu,et al.  Gravitational wave detection with single-laser atom interferometers , 2010, 1003.4218.

[97]  Massimo Inguscio,et al.  A Compact Atom Interferometer for Future Space Missions , 2010 .

[98]  A. Landragin,et al.  Comparison between two mobile absolute gravimeters: optical versus atomic interferometers , 2010, 1005.0357.

[99]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[100]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[101]  M. Doser AEGIS: An experiment to measure the gravitational interaction between matter and antimatter , 2010 .

[102]  D. Cline Sources and detection of dark matter and dark energy in the universe : proceedings of the 8th UCLA symposium, Marina del Rey, California, 20-22 February 2008 , 2009 .

[103]  Luigi Cacciapuoti,et al.  Space clocks and fundamental tests: The ACES experiment , 2009 .

[104]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[105]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[106]  J. Laskar,et al.  Quantum physics exploring gravity in the outer solar system: the SAGAS project , 2007, 0711.0304.

[107]  Savas Dimopoulos,et al.  Atomic gravitational wave interferometric sensor , 2008, 0806.2125.

[108]  Savas Dimopoulos,et al.  General Relativistic Effects in Atom Interferometry , 2008, 0802.4098.

[109]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[110]  K. Olive,et al.  Environmental Dependence of Masses and Coupling Constants , 2007, 0709.3825.

[111]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[112]  A. Cronin,et al.  Atom Interferometers , 2007, 0712.3703.

[113]  W. Schleich,et al.  Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space , 2007 .

[114]  G. Tino,et al.  Is it possible to detect gravitational waves with atom interferometers? , 2007, gr-qc/0702118.

[115]  F. Sorrentino,et al.  Long-lived BLOCH oscillations with bosonic sr atoms and application to gravity measurement at the micrometer scale. , 2006, Physical review letters.

[116]  C. Lada Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.

[117]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[118]  Gerard Petit,et al.  Relativistic theory for time comparisons: a review , 2005 .

[119]  T. Hänsch,et al.  Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. , 2004, Physical review letters.

[120]  V. Scarani,et al.  Time-bin entangled qubits for quantum communication created by femtosecond pulses , 2002, quant-ph/0205144.

[121]  Pierre Touboul,et al.  MICROSCOPE, testing the equivalence principle in space , 2001 .

[122]  P. Steinhardt,et al.  Q-ball candidates for self-interacting dark matter. , 2001, Physical review letters.

[123]  R. Barkana,et al.  Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.

[124]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[125]  M. Kasevich,et al.  Measurement of the Earth's Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer , 1998 .

[126]  David E. Pritchard,et al.  Optics and Interferometry with Atoms and Molecules , 2009 .

[127]  N. Christensen,et al.  Delta Kick Cooling: A New Method for Cooling Atoms , 1997 .

[128]  P. Worden Testing The Equivalence Principle in Space , 1996 .

[129]  J. Gordon,et al.  Proposal for optically cooling atoms to temperatures of the order of 10-6 K. , 1986, Optics letters.

[130]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[131]  A. Vilenkin Cosmic Strings and Domain Walls , 1985 .

[132]  C. Alcock Gravitational lenses , 1982, Nature.

[133]  S. A. Werner,et al.  Observation of Gravitationally Induced Quantum Interference , 1975 .

[134]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[135]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[136]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[137]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.