Characterising the Performance of XOR Games and the Shannon Capacity of Graphs

In this Letter we give a set of necessary and sufficient conditions such that quantum players of a two-party XOR game cannot perform any better than classical players. With any such game, we associate a graph and examine its zero-error communication capacity. This allows us to specify a broad new class of graphs for which the Shannon capacity can be calculated. The conditions also enable the parametrization of new families of games that have no quantum advantage for arbitrary input probability distributions, up to certain symmetries. In the future, these might be used in information-theoretic studies on reproducing the set of quantum nonlocal correlations.

[1]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[2]  A. J. Short,et al.  Quantum nonlocality and beyond: limits from nonlocal computation. , 2007, Physical review letters.

[3]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[4]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  A. Winter,et al.  Graph-theoretic approach to quantum correlations. , 2014, Physical review letters.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[9]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[10]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[11]  H. Buhrman,et al.  Limit on nonlocality in any world in which communication complexity is not trivial. , 2005, Physical review letters.

[12]  Frank Harary,et al.  Graph Theory , 2016 .

[13]  Andreas Winter Quantum mechanics: The usefulness of uselessness , 2010, Nature.

[14]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[15]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[16]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[17]  O Burrus,et al.  [To inform]. , 1984, Revue de l'infirmiere.

[18]  S. Wehner Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities , 2005, quant-ph/0510076.

[19]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[20]  Lars Eirik Danielsen,et al.  Basic exclusivity graphs in quantum correlations , 2012, 1211.5825.

[21]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[22]  A. Cabello Simple explanation of the quantum violation of a fundamental inequality. , 2012, Physical review letters.

[24]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[25]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[26]  William Slofstra,et al.  Perfect Parallel Repetition Theorem for Quantum Xor Proof Systems , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[27]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[28]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[29]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[30]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.