CONTINUOUS Q1–Q1 STOKES ELEMENTS STABILIZED WITH NON-CONFORMING NULL EDGE AVERAGE VELOCITY FUNCTIONS

We present a stabilized finite element method for Stokes equations with piecewise continuous bilinear approximations for both velocity and pressure variables. The velocity field is enriched with piecewise polynomial bubble functions with null average at element edges. These functions are statically condensed at the element level and therefore they can be viewed as a continuous Q1–Q1 stabilized finite element method. The enriched velocity-pressure pair satisfies optimal inf–sup conditions and approximation properties. Numerical experiments show that the proposed discretization outperforms the Galerkin least-squares method.

[1]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[2]  T. Hughes,et al.  Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .

[3]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[4]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[5]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[6]  Gabriel Wittum,et al.  Numerical Solution of Elliptic Differential Equations by Reduction to the Interface , 2004, Lecture Notes in Computational Science and Engineering.

[7]  P. Mons,et al.  L’élément $Q_1$ -bulle/ $Q_1$ , 1992 .

[8]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[12]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[13]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[14]  Olof B. Widlund,et al.  Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity , 2003, Numerische Mathematik.

[15]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[16]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[17]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[18]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[19]  Wen Bai The quadrilateral ‘Mini’ finite element for the Stokes problem☆ , 1997 .

[20]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[21]  Roger Pierre Optimal selection of the bubble function in the stabilization of the P1-P1 element for the Stokes problem , 1995 .

[22]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[23]  O. Widlund,et al.  Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .