CONTINUOUS Q1–Q1 STOKES ELEMENTS STABILIZED WITH NON-CONFORMING NULL EDGE AVERAGE VELOCITY FUNCTIONS
暂无分享,去创建一个
[1] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[2] T. Hughes,et al. Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .
[3] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[4] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[5] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[6] Gabriel Wittum,et al. Numerical Solution of Elliptic Differential Equations by Reduction to the Interface , 2004, Lecture Notes in Computational Science and Engineering.
[7] P. Mons,et al. L’élément $Q_1$ -bulle/ $Q_1$ , 1992 .
[8] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[9] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[10] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[11] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[12] T. Hughes,et al. Two classes of mixed finite element methods , 1988 .
[13] Douglas N. Arnold,et al. Approximation by quadrilateral finite elements , 2000, Math. Comput..
[14] Olof B. Widlund,et al. Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity , 2003, Numerische Mathematik.
[15] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .
[16] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[17] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[18] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[19] Wen Bai. The quadrilateral ‘Mini’ finite element for the Stokes problem☆ , 1997 .
[20] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[21] Roger Pierre. Optimal selection of the bubble function in the stabilization of the P1-P1 element for the Stokes problem , 1995 .
[22] Guido Kanschat,et al. Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..
[23] O. Widlund,et al. Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .