Discrete Symbol Calculus
暂无分享,去创建一个
[1] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[2] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[3] Gary F. Margrave,et al. An Introduction to Numerical Methods of Pseudodifferential Operators , 2008 .
[4] M. Shubin,et al. ALMOST PERIODIC FUNCTIONS AND PARTIAL DIFFERENTIAL OPERATORS , 1978 .
[5] S. Mallat,et al. Orthogonal bandelet bases for geometric images approximation , 2008 .
[6] Martin J. Mohlenkamp,et al. Preliminary results on approximating a wavefunction as an unconstrained sum of Slater determinants , 2007 .
[7] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[8] Vladimir Rokhlin,et al. A Fast Direct Algorithm for the Solution of the Laplace Equation on Regions with Fractal Boundaries , 1994 .
[9] Laurent Demanet,et al. Wave atoms and time upscaling of wave equations , 2009, Numerische Mathematik.
[10] H. Helson. Harmonic Analysis , 1983 .
[11] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[12] Thomas Huckle,et al. Compact Fourier Analysis for Designing Multigrid Methods , 2008, SIAM J. Sci. Comput..
[13] Stefano Serra,et al. Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .
[14] Jeroen Tromp,et al. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .
[15] Yogi A. Erlangga,et al. Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .
[16] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[17] G. Beylkin,et al. Wave propagation using bases for bandlimited functions , 2005 .
[18] F. Herrmann,et al. Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .
[19] CHRISTIAAN C. STOLK. A Fast Method for Linear Waves Based on Geometrical Optics , 2009, SIAM J. Numer. Anal..
[20] François Treves,et al. Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .
[21] Vladimir I. Clue. Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.
[22] Y. Meyer. Wavelets and Operators , 1993 .
[23] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[24] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[25] Christiaan C. Stolk. A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous acoustic media , 2003 .
[26] Laurent Demanet,et al. A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..
[27] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[28] Reinhard Nabben,et al. Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..
[29] E. Michielssen,et al. A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .
[30] Michael Taylor,et al. Pseudodifferential Operators and Nonlinear PDE , 1991 .
[31] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[32] Laurent Demanet,et al. Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..
[33] Christopher D. Sogge,et al. Fourier Integrals in Classical Analysis , 1993 .
[34] L. Demanet. Curvelets, Wave Atoms, and Wave Equations , 2006 .
[35] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[36] F. Herrmann,et al. Compressed wavefield extrapolation , 2007 .
[37] Shivkumar Chandrasekaran,et al. A fast and stable solver for recursively semi-separable systems of linear equations , 2001 .
[38] Martin J. Gander,et al. An Incomplete LU Preconditioner for Problems in Acoustics , 2005 .
[39] Nicholas J. Higham,et al. Stable iterations for the matrix square root , 1997, Numerical Algorithms.
[40] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[41] M. V. de Hoop,et al. Generalized‐Screen Approximation and Algorithm for the Scattering of Elastic Waves , 2003 .
[42] Gang Bao,et al. Computation of Pseudo-Differential Operators , 1996, SIAM J. Sci. Comput..
[43] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[44] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[45] Louis Fishman,et al. Exact constructions of square-root Helmholtz operator symbols: The focusing quadratic profile , 2000 .
[46] Yogi A. Erlangga,et al. A robust and efficient iterative method for the numerical solution of the Helmholtz equation , 2005 .
[47] Robert T. Seeley,et al. Complex powers of an elliptic operator , 1967 .
[48] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[49] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[50] M. D. Fisk,et al. The phase screen method for vector elastic waves , 1991 .