Discrete Symbol Calculus

This paper deals with efficient numerical representation and manipulation of differential and integral operators as symbols in phase-space, i.e., functions of space $x$ and frequency $\xi$. The symbol smoothness conditions obeyed by many operators in connection to smooth linear partial differential equations allow fast-converging, nonasymptotic expansions in adequate systems of rational Chebyshev functions or hierarchical splines to be written. The classical results of closedness of such symbol classes under multiplication, inversion, and taking the square root translate into practical iterative algorithms for realizing these operations directly in the proposed expansions. Because symbol-based numerical methods handle operators and not functions, their complexity depends on the desired resolution $N$ very weakly, typically only through $\log N$ factors. We present three applications to computational problems related to wave propagation: (1) preconditioning the Helmholtz equation, (2) decomposing wave fields into one-way components, and (3) depth extrapolation in reflection seismology. The software is made available in the software sections of math.mit.edu/$\sim$laurent and www.math.utexas.edu/users/lexing.

[1]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[2]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[3]  Gary F. Margrave,et al.  An Introduction to Numerical Methods of Pseudodifferential Operators , 2008 .

[4]  M. Shubin,et al.  ALMOST PERIODIC FUNCTIONS AND PARTIAL DIFFERENTIAL OPERATORS , 1978 .

[5]  S. Mallat,et al.  Orthogonal bandelet bases for geometric images approximation , 2008 .

[6]  Martin J. Mohlenkamp,et al.  Preliminary results on approximating a wavefunction as an unconstrained sum of Slater determinants , 2007 .

[7]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[8]  Vladimir Rokhlin,et al.  A Fast Direct Algorithm for the Solution of the Laplace Equation on Regions with Fractal Boundaries , 1994 .

[9]  Laurent Demanet,et al.  Wave atoms and time upscaling of wave equations , 2009, Numerische Mathematik.

[10]  H. Helson Harmonic Analysis , 1983 .

[11]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[12]  Thomas Huckle,et al.  Compact Fourier Analysis for Designing Multigrid Methods , 2008, SIAM J. Sci. Comput..

[13]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[14]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[15]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[16]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[17]  G. Beylkin,et al.  Wave propagation using bases for bandlimited functions , 2005 .

[18]  F. Herrmann,et al.  Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .

[19]  CHRISTIAAN C. STOLK A Fast Method for Linear Waves Based on Geometrical Optics , 2009, SIAM J. Numer. Anal..

[20]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[21]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[22]  Y. Meyer Wavelets and Operators , 1993 .

[23]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[24]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[25]  Christiaan C. Stolk A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous acoustic media , 2003 .

[26]  Laurent Demanet,et al.  A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..

[27]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[28]  Reinhard Nabben,et al.  Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..

[29]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[30]  Michael Taylor,et al.  Pseudodifferential Operators and Nonlinear PDE , 1991 .

[31]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[32]  Laurent Demanet,et al.  Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..

[33]  Christopher D. Sogge,et al.  Fourier Integrals in Classical Analysis , 1993 .

[34]  L. Demanet Curvelets, Wave Atoms, and Wave Equations , 2006 .

[35]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[36]  F. Herrmann,et al.  Compressed wavefield extrapolation , 2007 .

[37]  Shivkumar Chandrasekaran,et al.  A fast and stable solver for recursively semi-separable systems of linear equations , 2001 .

[38]  Martin J. Gander,et al.  An Incomplete LU Preconditioner for Problems in Acoustics , 2005 .

[39]  Nicholas J. Higham,et al.  Stable iterations for the matrix square root , 1997, Numerical Algorithms.

[40]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[41]  M. V. de Hoop,et al.  Generalized‐Screen Approximation and Algorithm for the Scattering of Elastic Waves , 2003 .

[42]  Gang Bao,et al.  Computation of Pseudo-Differential Operators , 1996, SIAM J. Sci. Comput..

[43]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[44]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[45]  Louis Fishman,et al.  Exact constructions of square-root Helmholtz operator symbols: The focusing quadratic profile , 2000 .

[46]  Yogi A. Erlangga,et al.  A robust and efficient iterative method for the numerical solution of the Helmholtz equation , 2005 .

[47]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[48]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[50]  M. D. Fisk,et al.  The phase screen method for vector elastic waves , 1991 .