Kullback-Leibler divergence to evaluate posterior sensitivity to different priors for autoregressive time series models

ABSTRACT In this paper we use the Kullback-Leibler divergence to measure the distance between the posteriors of the autoregressive (AR) model coefficients, aiming to evaluate mathematically the sensitivity of the coefficients posterior to different types of priors, i.e. Jeffreys’, g, and natural conjugate priors. In addition, we evaluate the impact of the posteriors distance in Bayesian estimates of mean and variance of the model coefficients by generating a large number of Monte Carlo simulations from the posteriors. Simulation study results show that the coefficients posterior is sensitive to prior distributions, and the posteriors distance has more influence on Bayesian estimates of variance than those of mean of the model coefficients. Same results are obtained from the application to real-world time series datasets.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Reinaldo Boris Arellano-Valle,et al.  Kullback-Leibler Divergence Measure for Multivariate Skew-Normal Distributions , 2012, Entropy.

[3]  Robert H. Shumway,et al.  Time series analysis and its applications : with R examples , 2017 .

[4]  K. Zografos,et al.  On maximum entropy characterization of Pearson's type II and VII multivariate distributions , 1999 .

[5]  Ayman A. Amin,et al.  GIBBS SAMPLING FOR SARMA MODELS , 2014 .

[6]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[7]  Ayman A. Amin Bayesian inference for double SARMA models , 2018 .

[8]  Samir M. Shaarawy,et al.  On Bayesian Identification of Autoregressive Processes , 2015 .

[9]  A class of asymmetric pathway distributions and an entropy interpretation , 2008 .

[10]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[11]  H. Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[12]  Bayesian Identification of Moving Average Models , 2007 .

[13]  Sha Yao,et al.  Bayesian Approach for ARMA Process and Its Application , 2009 .

[14]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[15]  Daniel Gianola,et al.  Bayesian Analysis of Linear Models , 2002 .

[16]  R. McCulloch Local Model Influence , 1989 .

[17]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[18]  Svetlozar T. Rachev,et al.  Bayesian methods in finance , 2008 .

[19]  S. Nadarajah,et al.  Expressions for Rényi and Shannon entropies for multivariate distributions , 2005 .

[20]  Ayman A. Amin,et al.  Gibbs Sampling for Double Seasonal Autoregressive Models , 2015 .

[21]  Howard Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[22]  L. M. M.-T. Theory of Probability , 1929, Nature.

[23]  M. E. Welch,et al.  Bayesian analysis of time series and dynamic models , 1990 .

[24]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[25]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[26]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[27]  Bayesian Inference for Double Seasonal Moving Average Models: A Gibbs Sampling Approach , 2017 .