Fish kairomones, its benefits and detriments: A model based study both from releaser and acceptor perspective

Abstract Kairomones have been documented as an infochemicals to convey information between individuals in aquatic system. However, whether the effect of fish kairomones on acceptor (zooplankton) is beneficial or detrimental is a debatable and unanswered issue. This may be due to lack of feasibility of experimentation. In this study, we theoretically explore how fish kairomones affect the aquatic food chain and provide possible explanation of such different behaviors of kairomones. To do this, we propose two hypotheses and formulate two simple mathematical models which resemble more realistic scenario synergetic with natural complex system. Our study suggests that vertical migration helps zooplankton species for proper conservation of its abundance by avoiding unnecessary over predation.

[1]  P. Hebert,et al.  Chaoborus‐induced shifts in the morphology of Daphnia ambigua1 , 1985 .

[2]  S. Dodson,et al.  Synergistic effects of low oxygen concentration, predator kairomone, and a pesticide on the cladoceran Daphnia pulex , 1995 .

[3]  S. Dodson,et al.  Complex effects of a kairomone of Chaoborus and an insecticide on Daphnia pulex , 1992 .

[4]  H. Boriss,et al.  Trimethylamine induces migration of waterfleas , 1999, Nature.

[5]  G. Pohnert,et al.  Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach , 2000 .

[6]  Alexey Voinov,et al.  MATHEMATICAL MODELLING OF A FISH POND ECOSYSTEM , 1984 .

[7]  Jonathan M. Chase Food Web Effects of Prey Size Refugia: Variable Interactions and Alternative Stable Equilibria , 1999, The American Naturalist.

[8]  T. Hanazato Induction of development of high helmets by a Chaoborus-released chemical in Daphnia galeata , 1991, Archiv für Hydrobiologie.

[9]  S. Dodson Cyclomorphosis in Daphnia galeata mendotae Birge and D. retrocurva Forbes as a predator-induced response , 1988 .

[10]  Carsten J. Loose,et al.  Chemically-induced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish , 1993 .

[11]  G. Swartzman,et al.  Stepwise iterative calibration of a multi-species phytoplankton-zooplankton simulation model using laboratory data , 1988 .

[12]  S. Frank,et al.  A MODEL OF INDUCIBLE DEFENSE , 1993, Evolution; international journal of organic evolution.

[13]  H. Stibor Predator induced life-history shifts in a freshwater cladoceran , 1992, Oecologia.

[14]  J. Macháček Comparison of the response of Daphnia galeata and Daphnia obtusa to fish-produced chemical substance , 1993 .

[15]  Rodrigo Ramos-Jiliberto,et al.  Relating behavior to population dynamics: a predator–prey metaphysiological model emphasizing zooplankton diel vertical migration as an inducible response , 2000 .

[16]  S. Dodson The ecological role of chemical stimuli for the zooplankton: Predator‐avoidance behavior in Daphnia , 1988 .

[17]  Y. Ishikawa,et al.  Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex , 2010, BMC Developmental Biology.

[18]  W. Lampert,et al.  Predator evasion as an explanation of diurnal vertical migration by zooplankton , 1981, Nature.

[19]  P. Abrams Measuring the impact of dynamic antipredator traits on predator-prey-resource interactions. , 2008, Ecology.

[20]  H. Fields,et al.  Cellular mechanism for anti-analgesic action of agonists of the κ-opioid receptor , 1997, Nature.

[21]  J. Ringelberg,et al.  Do bacteria, not fish, produce ‘fish kairomone’? , 1998 .

[22]  T. Hanazato Life History Responses of Two Daphnia Species of Different Sizes against a Fish Kairomone. , 1995 .

[23]  Ian A. E. Bayly,et al.  Predator induction of crests in morphs of the Daphnia carinata King complex , 1981 .

[24]  Robert H. Whittaker,et al.  Allomones and Kairomones: Transspecific Chemical Messengers , 1970 .

[25]  T. Hanazato Influence of food density on the effects of a Chaoborus‐released chemical on Daphnia ambigua , 1991 .

[26]  R. Tollrian Predator-induced helmet formation in Daphnia cucullata(SARS) , 1990, Archiv für Hydrobiologie.

[27]  S. Dodson,et al.  Demographic costs of Chaoborus-induced phenotypic plasticity in Daphnia pulex , 1990, Oecologia.

[28]  Carsten J. Loose,et al.  Metabolic costs during predator‐induced dielvertical migration of Daphnia , 1992 .

[29]  K. Sampath,et al.  Copper Toxicity on Growth and Reproductive Potential in an Ornamental Fish, Xiphophorus helleri , 2003, Asian Fisheries Science.

[30]  Carsten J. Loose,et al.  Plankton Towers: Bridging the gap between laboratory and field experiments , 1992 .

[31]  Donald L. DeAngelis,et al.  INDUCIBLE DEFENSES AND TROPHIC STRUCTURE , 2004 .

[32]  J. Macháček Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata , 1991, Hydrobiologia.

[33]  W. Boeing,et al.  Inducible defences are a stabilizing factor for predator and prey populations: a field experiment , 2010 .

[34]  A. Weber Interactions Between Predator Kairomone and Food Level Complicate the Ecological Interpretation of Daphnia Laboratory Results , 2001 .

[35]  W. Lampert The adaptive significance of diel vertical migrations , 1989 .

[36]  T. Thorslund,et al.  Effects of Constant Temperatures and Diel Temperature Fluctuations on Specific Growth and Mortality Rates and Yield of Juvenile Rainbow Trout, Salmo gairdneri , 1977 .

[37]  S. Frank Inducible defence and the social evolution of herd immunity , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  L. Weider,et al.  Plasticity of Daphnia life histories in response to chemical cues from predators , 1993 .

[39]  R. Ramos‐Jiliberto,et al.  Dynamic effects of inducible defenses in a one-prey two-predators system , 2008 .

[40]  Maurice W. Sabelis,et al.  Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? , 1988 .

[41]  Piotr Dawidowicz,et al.  Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance , 1994 .

[42]  Wolf M. Mooij,et al.  From inducible defences to population dynamics: modelling refuge use and life history changes in Daphnia , 2002 .

[43]  M. Z. Gliwicz Predation and the evolution of vertical migration in zooplankton , 1986, Nature.

[44]  J. S. Suffern,et al.  Vertical migration in zooplankton as a predator avoidance mechanism1 , 1976 .

[45]  A. R. Black Predator‐induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses to Notonecta and Chaoborus , 1993 .

[46]  Rodrigo Ramos-Jiliberto,et al.  Role of inducible defenses in the stability of a tritrophic system , 2008 .

[47]  C. Laforsch,et al.  INDUCIBLE DEFENSES IN MULTIPREDATOR ENVIRONMENTS: CYCLOMORPHOSIS IN DAPHNIA CUCULLATA. , 2004 .

[48]  Takayuki Hanazato,et al.  Fish-induced life-history shifts in the cladocerans Daphnia and Simocephalus: are they positive or negative responses? , 2001 .

[49]  S. D. Cooper,et al.  Competition Among Cladocera , 1982 .

[50]  R. Zimmer,et al.  REGULATORY EFFECTS OF ENVIRONMENTAL CHEMICAL SIGNALS ON SEARCH BEHAVIOR AND FORAGING SUCCESS , 1999 .

[51]  W. Mooij,et al.  Effects of infochemicals released by gape-limited fish on life history traits of Daphnia: a maladaptive response? , 2004 .

[52]  Ralpoh Tollrian Predator‐Induced Morphological Defenses: Costs, Life History Shifts, and Maternal Effects in Daphnia Pulex , 1995 .

[53]  P. Spaak,et al.  Chemically induced anti-predator defences in plankton: a review , 2004, Hydrobiologia.