Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator

We have demonstrated the directional control of surface plasmon polariton (SPP) waves propagating through an asymmetric plasmonic Bragg resonator using femtosecond temporal-phase control via the resonant coupling of SPPs and the interference of SPPs. The near-field images display significant temporal-phase dependence, switching between left and right propagation after the Bragg resonator. Our results would be a key step toward the control of surface plasmon propagation direction in nanoscaled plasmonic applications

[1]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[2]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[3]  Chinlon Lin,et al.  Biosensor Arrays based on Surface Plasmon Resonance Phase Imaging , 2006, 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials.

[4]  G. Steinmeyer,et al.  Femtosecond light transmission and subradiant damping in plasmonic crystals. , 2005, Physical review letters.

[5]  M. Wegener,et al.  Scanning interferometer stabilized by use of Pancharatnam's phase. , 1997, Optics letters.

[6]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[7]  Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces , 2005, cond-mat/0508041.

[8]  J Bravo-Abad,et al.  Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[10]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[11]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[12]  Q-Han Park,et al.  Coupling of surface plasmon polaritons and light in metallic nanoslits. , 2005, Physical review letters.

[13]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[14]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[15]  Kim,et al.  Coherent control of absorption and polarization decay in a GaAs quantum well: time and spectral domain studies , 2000, Physical review letters.

[16]  Q-Han Park,et al.  Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. , 2003, Physical review letters.

[17]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[18]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[19]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[20]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[21]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[22]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[23]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[24]  Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources , 2004 .

[25]  Ji-Hun Kang,et al.  Control of surface plasmon generation efficiency by slit-width tuning , 2008 .