The Law of Evidence and Labelled Deduction: A Position Paper

The purpose of this position paper is to reveal, through examples, the potential for collaboration between the theory of legal reasoning on the one hand, and some recently developed instruments of formal logic. Three zones of contact are highlighted. 1. The law of evidence, in the light of labelled deductive systems (LDSs), discussed through the example of the admissibility of hearsay evidence. 2. The give and take of legal debate in general, and regarding the acceptability of evidence in particular, represented using the abstract systems of argumentation developed in logic, notably the coloured graphs of Bench-Capon. This is considered through an imaginary example. 3. The use of Bayesian networks as tools for analysing the effects of uncertainty on the legal status of actions, illustrated via the same example. These three kinds of technique do not exclude each other. On the contrary, many cases of legal argument will need the combined resources of all three.

[1]  Henry Prakken,et al.  Logical Tools for Modelling Legal Argument , 1997 .

[2]  Dov M. Gabbay,et al.  Modal Provability Foundations for Argumentation Networks , 2009, Stud Logica.

[3]  Dov M. Gabbay,et al.  Temporal Dynamics of Argumentation Networks , 2005 .

[4]  Krysia Broda,et al.  Applying connectionist modal logics to distributed knowledge representation problems , 2004, Int. J. Artif. Intell. Tools.

[5]  Dov M. Gabbay Semantics for Higher Level Attacks in Extended Argumentation Frames Part 1: Overview , 2009, Stud Logica.

[6]  Dov M. Gabbay,et al.  Chapter 7 – Agenda Relevance , 2003 .

[7]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[8]  End Semester Bal Law of Evidence , 2011 .

[9]  Trevor J. M. Bench-Capon Persuasion in Practical Argument Using Value-based Argumentation Frameworks , 2003, J. Log. Comput..

[10]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[11]  Dov M. Gabbay,et al.  Agenda Relevance: A Study in Formal Pragmatics , 2013 .

[12]  Dov M. Gabbay,et al.  Logic and The Practical Turn , 2002 .

[13]  Dov M. Gabbay,et al.  Cooperate with your logic ancestors , 1999 .

[14]  Ch. Perelman,et al.  Justice, law, and argument , 1980 .

[15]  George C. Christie The Notion of an Ideal Audience in Legal Argument , 2000 .

[16]  Adrian Keane,et al.  The modern law of evidence , 1985 .

[17]  Dov M. Gabbay,et al.  Fibring Neural Networks , 2004, AAAI.

[18]  Dov M. Gabbay,et al.  Analysis and Synthesis of Logics , 2008 .

[19]  Trevor J. M. Bench-Capon Value-based argumentation frameworks , 2002, NMR.

[20]  Dov M. Gabbay,et al.  The Reach of Abduction , 2005 .

[21]  Krysia Broda,et al.  Neural-Symbolic Learning Systems , 2002 .

[22]  Dov M. Gabbay,et al.  Value-based Argumentation Frameworks as Neural-symbolic Learning Systems , 2005, J. Log. Comput..

[23]  Henry Prakken,et al.  Argumentation schemes and generalisations in reasoning about evidence , 2003, ICAIL.

[24]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[25]  Andrew J. I. Jones,et al.  Deontic Logic and Contrary-to-Duties , 2002 .

[26]  Dov M. Gabbay,et al.  The reach of abduction : insight and trial , 2005 .

[27]  Dov M. Gabbay,et al.  Fibring Argumentation Frames , 2009, Stud Logica.

[28]  Dov M. Gabbay Modal Foundations for Argumentation Networks , 2009 .

[29]  Dov M. Gabbay,et al.  Reactive Kripke Models and Contrary to Duty Obligations , 2008, DEON.

[30]  Marek J. Sergot,et al.  The British Nationality Act as a logic program , 1986, CACM.

[31]  Peter Tillers,et al.  The Dynamics of Judicial Proof , 2002 .

[32]  J. Girard,et al.  Proofs and types , 1989 .

[33]  Dov M. Gabbay,et al.  Logical Modes of Attack in Argumentation Networks , 2009, Stud Logica.

[34]  Dov M. Gabbay,et al.  Connectionist Non-classical Logics: Distributed Reasoning & Learning in Neural Networks , 2008 .

[35]  Jules L. Coleman,et al.  Risks and Wrongs. , 1995 .