Identification of echinoderms (Echinodermata) from an anchialine cave in Cozumel Island, Mexico, using DNA barcodes

The echinoderm species richness of the Aerolito de Paraiso anchialine cave, on Cozumel Island, in the Mexican Caribbean, is assessed on the basis of morphological and DNA barcoding data. We included specimens from this cave system and from different open sea areas, and employed two different approaches for species delineation based on DNA barcoding data: a 2% cox1 divergence and the general mixed Yule‐coalescent (GMYC) approaches. We subsequently compared the results derived from these approaches with our morphospecies discrimination. A total of 188 cox1 sequences belonging to specimens of four echinoderm classes were examined. The 2% cox1 divergence and GMYC approaches recovered 78 and 70 putative species, respectively, 24 and 22 of which corresponded to specimens from the anchialine system. Of 26 echinoderm species identified in the cave system, seven appear to be endemic to it. Among these are Copidaster carvenicola Solís‐Marín & Laguarda‐Figueras, 2010, two morphologically distinctive, undescribed species belonging to Asterinides and Ophionereis and four probably cryptic undescribed species originally assigned to Amphipholis squamata (Delle Chiaje, 1839), Astropecten duplicatus Gray, 1840, Copidaster lymani (AH Clark, 1948) and Ophiothrix angulata (Say, 1825). Further research and protection of this particularly fragile ecosystem becomes urgent because construction of tourism developments is planned nearby.

[1]  M. Byrne,et al.  Genetic barcoding of commercial Bêche‐de‐mer species (Echinodermata: Holothuroidea) , 2009, Molecular ecology resources.

[2]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  Alfried P Vogler,et al.  Sequence-based species delimitation for the DNA taxonomy of undescribed insects. , 2006, Systematic biology.

[4]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[5]  S. Palumbi What can molecular genetics contribute to marine biogeography? An urchin's tale , 1996 .

[6]  M. Downey Starfishes from the Caribbean and the Gulf of Mexico , 1973 .

[7]  F. Solís-Marín,et al.  Equinodermos (Echinodermata) de las aguas mexicanas del Golfo de México , 2005 .

[8]  J. E. Smith The Structure and Function of the Tube Feet in Certain Echinoderms , 1937, Journal of the Marine Biological Association of the United Kingdom.

[9]  B. Buitrón-Sánchez,et al.  The Echinoderms of Mexico: Biodiversity, Distribution and Current State of Knowledge , 2013 .

[10]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[11]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[12]  M. Byrne,et al.  Morphological and Genetic Variation Indicate Cryptic Species Within Lamarck’s Little Sea Star, Parvulastra (=Patiriella) exigua , 2006, The Biological Bulletin.

[13]  A. E. Verrill Report On The Ophiuroidea Collected By The Bahama Expedition In 1893 , 2012 .

[14]  M. S. Roy,et al.  PHYLOGEOGRAPHIC ANALYSIS OF THE BROODING BRITTLE STAR AMPHIPHOLIS SQUAMATA (ECHINODERMATA) ALONG THE COAST OF NEW ZEALAND REVEALS HIGH CRYPTIC GENETIC VARIATION AND CRYPTIC DISPERSAL POTENTIAL , 2002, Evolution; international journal of organic evolution.

[15]  J. Alvarado Echinoderm diversity in the Caribbean Sea , 2011, Marine Biodiversity.

[16]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[17]  Luís,et al.  CENOTES ( ANCHIALINE CAVES ) ON COZUMEL ISLAND , QUINTANA ROO , MÉXICO , 2007 .

[18]  Cindy Lee Van Dover,et al.  The Ecology of Deep-Sea Hydrothermal Vents , 2000 .

[19]  L. Holthuis Caridean Shrimps found in Land-Locked Saltwater Pools at four Indo-West Pacific Localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species , 1973 .

[20]  F. Solís-Marín,et al.  Ofiuroideos (Echinodermata: Ophiuroidea) de las aguas mexicanas del golfo de México , 2008 .

[21]  Botosaneanu Stygofauna Mundi: A Faunistic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters , 1987 .

[22]  John Edward Gray,et al.  A synopsis of the genera and species of the Class Hypostoma (Asterias, Linnaeus) , 1840 .

[23]  F. Solís-Marín,et al.  Echinoderm Research and Diversity in Latin America , 2013, Springer Berlin Heidelberg.

[24]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[25]  Anisah W. Ghoorah,et al.  jMOTU and Taxonerator: Turning DNA Barcode Sequences into Annotated Operational Taxonomic Units , 2011, PloS one.

[26]  M. Downey,et al.  Starfishes of the Atlantic , 1992 .

[27]  Juan J. Torres-Vega,et al.  Equinodermos (Echinodermata) del Caribe Mexicano , 2005 .

[28]  K. Juniper,et al.  Cold-seep benthic communities in the Japan subduction zones: geological control of community development , 1988 .

[29]  A. Fontaine The feeding mechanisms of the ophiuroid Ophiocomina nigra , 1965, Journal of the Marine Biological Association of the United Kingdom.

[30]  R. Ward,et al.  DNA barcoding discriminates echinoderm species , 2008, Molecular ecology resources.

[31]  M. Byrne,et al.  A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms , 2009 .

[32]  J. Mckenzie Sea Stars, Sea Urchins and Allies: Echinoderms of Florida and the Caribbean , 1997 .

[33]  E. Boissin,et al.  Design of phylum‐specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata , 2010, Molecular ecology resources.

[34]  G. Procaccini,et al.  Phylogeography of the sea urchin Paracentrotus lividus (Lamarck) (Echinodermata:Echinoidea): first insights from the South Tyrrhenian Sea , 2007, Hydrobiologia.

[35]  Annals and Magazine of Natural History , 1952, Nature.

[36]  L. S. Kornicker Worldwide Diving Discoveries of Living Fossil Animals from the Depths of Anchialine and Marine Caves , 2009 .

[37]  T. C. Kane,et al.  Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus , 1995 .