Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.

Bruce Menge | Christopher D G Harley | Katharine J Mach | K. A. S. Mislan | Brian Helmuth | Michael O'Donnell | Carol Blanchette | Mark W Denny | K A S Mislan | Michael T Burrows | Benjamin Ruttenberg | Nova Mieszkowska | Emily Carrington | E. Gosling | K. Mach | B. Menge | C. Harley | B. Broitman | N. Mieszkowska | B. Helmuth | Lauren Yamane | S. Gilman | F. Choi | C. Monaco | Jessica L Torossian | P. Szathmary | C. Blanchette | M. Burrows | L. Miller | M. O'Donnell | J. Lathlean | C. McQuaid | M. Foley | G. Hofmann | E. Carrington | A. Matzelle | B. Ruttenberg | E. Carpizo-Ituarte | Laura Petes | Gretchen E Hofmann | A. Power | Elizabeth Gosling | M. Nishizaki | Sarah E Gilman | Anne Marie Power | Francis Choi | Jonathan Robinson | Mackenzie L. Zippay | Allison Matzelle | Scott L Morello | Lauren Yamane | Denise Strickland | P Lauren Szathmary | Alyson Tockstein | Thomas J Hilbish | Michael Nishizaki | Melissa M Foley | Angela Johnson | Megan Poole | Mae M Noble | Erin L Richmond | Matt Robart | Jerod Sapp | Jackie Sones | Bernardo R Broitman | Luke P Miller | Philip Ross | Mackenzie Zippay | J A Macfarlan | Eugenio Carpizo-Ituarte | Carlos E Peña Mejía | Christopher D McQuaid | Justin Lathlean | Cristián J Monaco | Katy R Nicastro | Gerardo Zardi | Denise Strickland | E. Richmond | Jonathan J. Robinson | L. Petes | M. Robart | G. Zardi | K. Nicastro | Scott L. Morello | P. Ross | M. Poole | J. Sones | T. Hilbish | M. Noble | Mark W Denny | J. Macfarlan | Jerod Sapp | Alyson Tockstein | Angela Johnson

[1]  B. Menge,et al.  MOSAIC PATTERNS OF THERMAL STRESS IN THE ROCKY INTERTIDAL ZONE: IMPLICATIONS FOR CLIMATE CHANGE , 2006 .

[2]  K. A. S. Mislan,et al.  When to worry about the weather: role of tidal cycle in determining patterns of risk in intertidal ecosystems , 2009 .

[3]  A. Farrell,et al.  Physiology and Climate Change , 2008, Science.

[4]  D. Wethey,et al.  Three decades of high-resolution coastal sea surface temperatures reveal more than warming , 2012, Nature Communications.

[5]  S. Kooijman,et al.  Growth and reproductive simulation of candidate shellfish species at fish cages in the Southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture , 2012 .

[6]  B. Helmuth,et al.  Morphological and Ecological Determinants of Body Temperature of Geukensia demissa, the Atlantic Ribbed Mussel, and Their Effects On Mussel Mortality , 2007, The Biological Bulletin.

[7]  B. Helmuth,et al.  Tipping points, thresholds and the keystone role of physiology in marine climate change research. , 2011, Advances in marine biology.

[8]  J. Kingsolver,et al.  Beyond Thermal Performance Curves: Modeling Time-Dependent Effects of Thermal Stress on Ectotherm Growth Rates , 2016, The American Naturalist.

[9]  D. Wethey,et al.  Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Somero The physiology of global change: linking patterns to mechanisms. , 2012, Annual review of marine science.

[11]  G. Somero,et al.  The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’ , 2010, Journal of Experimental Biology.

[12]  B. Helmuth,et al.  Microhabitats, Thermal Heterogeneity, and Patterns of Physiological Stress in the Rocky Intertidal Zone , 2001, The Biological Bulletin.

[13]  B. Helmuth INTERTIDAL MUSSEL MICROCLIMATES: PREDICTING THE BODY TEMPERATURE OF A SESSILE INVERTEBRATE , 1998 .

[14]  D. Ackerly,et al.  Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California , 2014, Global change biology.

[15]  Kevin J. Gaston,et al.  Macrophysiology: large‐scale patterns in physiological traits and their ecological implications , 2004 .

[16]  O. Hoegh‐Guldberg,et al.  Revisiting climate thresholds and ecosystem collapse , 2011 .

[17]  K. A. S. Mislan,et al.  PAPER Geographical variation in climatic sensitivity of intertidal mussel zonation , 2014 .

[18]  G. Somero,et al.  Invasive and native blue mussels (genus Mytilus) on the California coast: the role of physiology in a biological invasion. , 2011 .

[19]  C. Franklin,et al.  Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  H. Pörtner,et al.  Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[21]  Michael Kearney,et al.  Modelling the ecological niche from functional traits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  B. Menge,et al.  INTERTIDAL MUSSELS EXHIBIT ENERGETIC TRADE‐OFFS BETWEEN REPRODUCTION AND STRESS RESISTANCE , 2008 .

[23]  F. Chavez,et al.  Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. , 2016, Ecology letters.

[24]  M. Tagliarolo,et al.  Field Measurements Indicate Unexpected, Serious Underestimation of Mussel Heart Rates and Thermal Tolerance by Laboratory Studies , 2016, PloS one.

[25]  B. Helmuth,et al.  The combination of selection and dispersal helps explain genetic structure in intertidal mussels , 2011, Oecologia.

[26]  K. A. S. Mislan,et al.  Predator–prey interactions under climate change: the importance of habitat vs body temperature , 2009 .

[27]  Robert K. Colwell,et al.  Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation , 2014, Proceedings of the National Academy of Sciences.

[28]  H. Hummel,et al.  Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations , 2007, Oecologia.

[29]  Gary A. Kendrick,et al.  Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming , 2011 .

[30]  C. Harley,et al.  Climate Change and Latitudinal Patterns of Intertidal Thermal Stress , 2002, Science.

[31]  D. Wethey Biogeography, Competition, and Microclimate: The Barnacle Chthamalus fragilis in New England1 , 2002, Integrative and comparative biology.

[32]  M. Kearney,et al.  microclim: Global estimates of hourly microclimate based on long-term monthly climate averages , 2014, Scientific Data.

[33]  David L. Strayer,et al.  Mollusks as ecosystem engineers: the role of shell production in aquatic habitats , 2003 .

[34]  M. Tagliarolo,et al.  Sub-lethal and sub-specific temperature effects are better predictors of mussel distribution than thermal tolerance , 2015 .

[35]  B. Helmuth,et al.  Testing the effects of wave exposure, site, and behavior on intertidal mussel body temperatures: applications and limits of temperature logger design , 2004 .

[36]  K. Schneider Heat Stress in the Intertidal: Comparing Survival and Growth of an Invasive and Native Mussel Under a Variety of Thermal Conditions , 2008, The Biological Bulletin.

[37]  K. A. S. Mislan,et al.  Gridded meteorological data as a resource for mechanistic macroecology in coastal environments. , 2011, Ecological applications : a publication of the Ecological Society of America.

[38]  Keith Brander,et al.  Quantitative approaches in climate change ecology , 2011, Global Change Biology.

[39]  B. Helmuth,et al.  Hidden signals of climate change in intertidal ecosystems: What (not) to expect when you are expecting , 2011 .

[40]  R. Ambrose,et al.  Dramatic declines in mussel bed community diversity: response to climate change? , 2006, Ecology.

[41]  A. McIntyre School of Natural Sciences , 2012 .

[42]  G. Williams,et al.  Non-climatic thermal adaptation: implications for species' responses to climate warming , 2010, Biology Letters.

[43]  Michael O'Donnell,et al.  Gene expression in the intertidal mussel Mytilus californianus: physiological response to environmental factors on a biogeographic scale , 2008 .

[44]  Amanda L. Kelley The role thermal physiology plays in species invasion , 2014, Conservation physiology.

[45]  D. Wethey,et al.  Response of intertidal populations to climate: Effects of extreme events versus long term change , 2011 .

[46]  S. Pincebourde,et al.  Microclimatic challenges in global change biology , 2013, Global change biology.

[47]  D. Wethey,et al.  Understanding complex biogeographic responses to climate change , 2015, Scientific Reports.

[48]  B. Menge,et al.  Effects of environmental stress on intertidal mussels and their sea star predators , 2008, Oecologia.

[49]  K. A. S. Mislan,et al.  Organismal climatology: analyzing environmental variability at scales relevant to physiological stress , 2010, Journal of Experimental Biology.

[50]  G. Somero,et al.  Rhythms of Gene Expression in a Fluctuating Intertidal Environment , 2008, Current Biology.

[51]  T. Paine Experimental Studies on the Relationship between a Dominant Competitor and Its Principal Predator , 1974 .

[52]  M. Kearney,et al.  Habitat, environment and niche: what are we modelling? , 2006 .

[53]  E. Serrão,et al.  Love Thy Neighbour: Group Properties of Gaping Behaviour in Mussel Aggregations , 2012, PloS one.

[54]  Carrie V. Kappel,et al.  Principles for managing marine ecosystems prone to tipping points , 2015 .

[55]  M. Kearney,et al.  Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. , 2009, Ecology letters.

[56]  D. Wethey,et al.  Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail , 2013, Ecology and evolution.

[57]  V. Savage,et al.  Increased temperature variation poses a greater risk to species than climate warming , 2014, Proceedings of the Royal Society B: Biological Sciences.

[58]  K. A. S. Mislan,et al.  Predicting intertidal organism temperatures with modified land surface models , 2011 .

[59]  Anne George,et al.  Advances in Biomimetics , 2011 .

[60]  B. Helmuth,et al.  Local‐ and regional‐scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation , 2003 .

[61]  Sarah Faulwetter,et al.  Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem , 2015, Global change biology.

[62]  F. Gohin,et al.  Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data , 2011 .

[63]  C. Harley,et al.  Beyond long-term averages: making biological sense of a rapidly changing world , 2014, Climate Change Responses.

[64]  B. Helmuth,et al.  Evaluation of effective shore level as a method of characterizing intertidal wave exposure regimes , 2006 .

[65]  P. Ralph,et al.  Heat budget and thermal microenvironment of shallow‐water corals: Do massive corals get warmer than branching corals? , 2008 .

[66]  G. Somero,et al.  Latitudinal differences in Mytilus californianus thermal physiology , 2012 .

[67]  D. Ayre,et al.  Using biomimetic loggers to measure interspecific and microhabitat variation in body temperatures of rocky intertidal invertebrates , 2015 .

[68]  R. Paine,et al.  Intertidal community structure , 1974, Oecologia.

[69]  B. Helmuth,et al.  Spatial variability in habitat temperature may drive patterns of selection between an invasive and native mussel species. , 2007 .

[70]  Roberto Danovaro,et al.  Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss , 2008, Current Biology.

[71]  B. Gaylord,et al.  The Role of Temperature in Determining Species' Vulnerability to Ocean Acidification: A Case Study Using Mytilus galloprovincialis , 2014, PloS one.

[72]  L. Miller,et al.  Importance of Behavior and Morphological Traits for Controlling Body Temperature in Littorinid Snails , 2011, The Biological Bulletin.

[73]  S. Gaines,et al.  Spatial patterns of growth in the mussel, Mytilus californianus, across a major oceanographic and biogeographic boundary at Point Conception, California, USA , 2007 .

[74]  F. B. Smith,et al.  Radionuclide deposition from the Chernobyl cloud , 1986, Nature.

[75]  E. Dzialowski Use of operative temperature and standard operative temperature models in thermal biology , 2005 .