Strategies and performance norms for efficient utilization of vector pipeline computers as illustrated by the classical mechanical simulation of rotationally inelastic collisions

Abstract We discuss the vectorization of a classical mechanical trajectory code which simulated the interaction of a rotationally excited rigid rotator with a colliding atom. This code was optimized in FORTRAN 77 and can be run on either a VAX 11/780 minicomputer or a CRAY-1 vector pipeline supercomputer. The article presents a global strategy for vectorizing a classical mechanical trajectory code, a set of performance criteria for characterizing the vectorization of a computer code, and an analysis of the four major subroutines of the vectorized trajectory code in terms of this strategy and these criteria.

[1]  Enrico Clementi,et al.  Ab initio computational chemistry , 1985 .

[2]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[3]  R. Vogelsang,et al.  Vectorization of molecular dynamics Fortran programs using the cyber 205 vector processing computer , 1983 .

[4]  Stig Nord,et al.  Approximation properties of the spline fit , 1967 .

[5]  P. K. Swaminathan,et al.  Sodium(1+) and potassium(1+) ion transport through a solvated gramicidin A transmembrane channel: molecular dynamics studies using parallel processors , 1985 .

[6]  Donald G. Truhlar,et al.  Vibrational energy transfer and an improved information-theoretic moment method. Comparison of the accuracy of several methods for determining state-to-state transition probabilities from quasiclassical trajectories , 1981 .

[7]  A. Rappé,et al.  Vectorization of quantum chemical algorithms: MC‐SCF procedures , 1984 .

[8]  Hans Lischka,et al.  Implementation of an electronic structure program system on the CYBER 205 , 1985 .

[9]  J. Detrich G. Corongiu,et al.  Monte Carlo liquid water simulations with four‐body interactions included , 1984 .

[10]  Lee W. Johnson,et al.  Numerical Analysis , 1977 .

[11]  M. D. Pattengill,et al.  Rotational Excitation III: Classical Trajectory Methods , 1979 .

[12]  Sally Chapman,et al.  Rotational excitation of linear molecules by collisions with atoms: Comparison of classical and quantum methods , 1977 .

[13]  Giorgina Corongiu,et al.  Large-Scale Scientific Application Programs in Chemistry and Physics on an Experimental Parallel Computer System , 1985, IBM J. Res. Dev..

[14]  Giorgina Corongiu,et al.  Monte Carlo liquid water simulation with four-body interactions included , 1984 .

[15]  Iain S. Duff,et al.  Vector and parallel processors in computational science , 1985 .

[16]  Jack J. Dongarra,et al.  Squeezing the most out of an algorithm in CRAY FORTRAN , 1984, ACM Trans. Math. Softw..

[17]  L. C. Bernard,et al.  A vectorizable elgenvalue solver for sparse matrices , 1984 .

[18]  V. R. Saunders,et al.  Applications of the CRAY-1 for quantum chemistry calculations , 1982 .

[19]  C. W. Gear,et al.  Hybrid Methods for Initial Value Problems in Ordinary Differential Equations , 1965 .

[20]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[21]  Wayne A Kraus,et al.  Vectorization of a classical trajectory code on a floating point systems, Inc. Model 164 attached processor , 1986, Journal of computational chemistry.

[22]  S. Chin,et al.  Parallelism in computational chemistry: Applications in quantum and statistical mechanics , 1985 .

[23]  E. Clementi,et al.  Parallelism in computations in quantum and statistical mechanics , 1985 .

[24]  Giorgina Corongiu,et al.  Parallelism in quantum chemistry: Hydrogen bond study in DNA base pairs as an example , 1984 .

[25]  E. Clementi,et al.  A parallel molecular dynamics strategy , 1985 .

[26]  Donald G. Truhlar,et al.  Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods , 1979 .

[27]  David Fincham,et al.  Molecular dynamics simulation using the cray-1 vector processing computer , 1981 .

[28]  Raymond A. Bair,et al.  Quantum chemistry with an attached processor , 1984 .

[29]  L. Kaufman,et al.  Squeezing the most out of eigenvalue solvers on high-performance computers , 1986 .

[30]  Donald G. Truhlar,et al.  Large-Scale Quantum Mechanical Scattering Calculations on Vector Computers , 1985 .

[31]  J. W. Humberston Classical mechanics , 1980, Nature.

[32]  William R. Martin,et al.  Investigation of vectorized Monte Carlo Algorithms , 1981 .

[33]  Stephen Wilson,et al.  The Use of Vector Processors in Quantum Chemistry: Experience in the United Kingdom , 1981 .