Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes

[1]  Kwangjin An,et al.  Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au–CeO2 Interface , 2018, ACS Catalysis.

[2]  Jun Kyu Kim,et al.  In situ synthesis of supported metal nanocatalysts through heterogeneous doping , 2018, Nature Communications.

[3]  H. Jeong,et al.  Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells , 2018 .

[4]  Woochul Jung,et al.  Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2−δ‐Based Cathodes for Thin‐Film Solid Oxide Fuel Cells , 2018 .

[5]  M. Cassidy,et al.  Tailoring SOFC Electrode Microstructures for Improved Performance , 2018, Advanced Energy Materials.

[6]  Konstantin M. Neyman,et al.  Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles , 2017 .

[7]  H. Jeong,et al.  Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites , 2017, Nature Communications.

[8]  J. VandeVondele,et al.  Catalyst support effects on hydrogen spillover , 2017, Nature.

[9]  John T. S. Irvine,et al.  Switching on electrocatalytic activity in solid oxide cells , 2016, Nature.

[10]  Woochul Jung,et al.  Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis. , 2016, Nanoscale.

[11]  Scott A. Barnett,et al.  A perspective on low-temperature solid oxide fuel cells , 2016 .

[12]  S. Haile,et al.  Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization , 2016 .

[13]  Konstantin M. Neyman,et al.  Counting electrons on supported nanoparticles. , 2016, Nature materials.

[14]  Norma E. Conner,et al.  Advances and Challenges , 2016, The American journal of hospice & palliative care.

[15]  Zongping Shao,et al.  Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. , 2016, Nano letters.

[16]  Mogens Bjerg Mogensen,et al.  Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers , 2016, Nature Energy.

[17]  S. Kim,et al.  Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. , 2015, ACS nano.

[18]  Zhi-Xun Shen,et al.  Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface , 2014, Nature Communications.

[19]  Francesco Ciucci,et al.  Modeling the impedance response of mixed-conducting thin film electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[20]  S. Haile,et al.  Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes , 2014 .

[21]  Dapeng Liu,et al.  Pt@CeO2 multicore@shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications. , 2013, Journal of the American Chemical Society.

[22]  Dong Sung Choi,et al.  Monodisperse pattern nanoalloying for synergistic intermetallic catalysis. , 2013, Nano letters.

[23]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[24]  G. Jackson,et al.  Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. , 2013, Journal of the American Chemical Society.

[25]  J. Vohs,et al.  Synthesis and Stability of Pd@CeO2 Core–Shell Catalyst Films in Solid Oxide Fuel Cell Anodes , 2013 .

[26]  G. Henkelman,et al.  CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism. , 2013, The journal of physical chemistry letters.

[27]  W. Chueh,et al.  High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells , 2012 .

[28]  C. Campbell Catalyst-support interactions: Electronic perturbations. , 2012, Nature chemistry.

[29]  Ping Liu,et al.  A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. , 2012, Journal of the American Chemical Society.

[30]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[31]  W. Chueh,et al.  High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. , 2012, Nature materials.

[32]  T. Woo,et al.  On the Atomistic Interactions That Direct Ion Conductivity and Defect Segregation in the Bulk and Surface of Samarium-Doped Ceria: A Genetic Algorithm Study , 2012 .

[33]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[34]  Thorsten Staudt,et al.  Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. , 2011, Nature materials.

[35]  A. Cao,et al.  Stabilizing metal nanoparticles for heterogeneous catalysis. , 2010, Physical chemistry chemical physics : PCCP.

[36]  H. Shinjoh Noble Metal Sintering Suppression Technology in Three-way Catalyst: Automotive Three-way Catalysts with the Noble Metal Sintering Suppression Technology Based on the Support Anchoring Effect , 2009 .

[37]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[38]  M. Bore,et al.  Mesoporous silica supports for improved thermal stability in supported Au catalysts , 2007 .

[39]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[40]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[41]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[42]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[43]  Hiroyuki Uchida,et al.  High‐Performance Electrode for Medium‐Temperature Solid Oxide Fuel Cells Effects of Composition and Microstructures on Performance of Ceria‐Based Anodes , 1998 .

[44]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[49]  San Ping Jiang,et al.  Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges , 2012 .

[50]  A. Cao,et al.  Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles. , 2010, Nature materials.

[51]  V. Ivanov,et al.  Formation mechanism of nanocrystalline ceria in aqueous solutions of cerium(III) nitrate and hexamethylenetetramine , 2008 .

[52]  Wei Lai Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors : A Case Study of Ceria , 2005 .