Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization

In this paper, an adaptive FE analysis is presented based on error estimation, adaptive mesh refinement and data transfer for enriched plasticity continua in the modelling of strain localization. As the classical continuum models suffer from pathological mesh-dependence in the strain softening models, the governing equations are regularized by adding rotational degrees-of-freedom to the conventional degrees-of-freedom. Adaptive strategy using element elongation is applied to compute the distribution of required element size using the estimated error distribution. Once a new mesh is generated, state variables and history-dependent variables are mapped from the old finite element mesh to the new one. In order to transfer the history-dependent variables from the old to new mesh, the values of internal variables available at Gauss point are first projected at nodes of old mesh, then the values of the old nodes are transferred to the nodes of new mesh and finally, the values at Gauss points of new elements are determined with respect to nodal values of the new mesh. Finally, the efficiency of the proposed model and computational algorithms is demonstrated by several numerical examples.

[1]  Walter Wunderlich,et al.  An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena , 1999 .

[2]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[3]  O. C. Zienkiewicz,et al.  Localization problems in plasticity using finite elements with adaptive remeshing , 1995 .

[4]  O. C. Zienkiewicz,et al.  Adaptive remeshing for shear band localization problems , 1991 .

[5]  René Chambon,et al.  Plastic continuum with microstructure, Local Second Gradient Theories for Geomaterials : Localization Studies , 2001 .

[6]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[7]  Xikui Li,et al.  A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation , 2005 .

[8]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour , 1999 .

[9]  David R. Owen,et al.  On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua , 1994 .

[10]  M. A. Kattis,et al.  Finite element method in plane Cosserat elasticity , 2002 .

[11]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[12]  R. Lewis,et al.  Numerical analysis of strain localization in metal powder‐forming processes , 2001 .

[13]  Wai-Fah Chen Limit Analysis and Soil Plasticity , 1975 .

[14]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[15]  Kaspar Willam,et al.  Localized failure analysis in elastoplastic Cosserat continua , 1998 .

[16]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[17]  M. Randolph,et al.  NUMERICAL PREDICTION OF COLLAPSE LOADS USING FINITE ELEMENT METHODS , 1982 .

[18]  A. Khoei,et al.  A hypoelasto-viscoplastic endochronic model for numerical simulation of shear band localization , 2005 .

[19]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[20]  J. Prévost,et al.  Adaptive meshing for dynamic strain localization , 1996 .

[21]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[22]  Jacek Tejchman,et al.  Numerical study on patterning of shear bands in a Cosserat continuum , 1993 .

[23]  Ted Belytschko,et al.  Continuum Theory for Strain‐Softening , 1984 .

[24]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[25]  Amir R. Khoei,et al.  H-adaptive mesh refinement for shear band localization in elasto-plasticity Cosserat continuum , 2005 .

[26]  R. Lewis,et al.  H-adaptive finite element analysis for localization phenomena with reference to metal powder forming , 2002 .

[27]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[28]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[29]  David R. Owen,et al.  On adaptive strategies for large deformations of elasto-plastic solids at finite strains : computational issues and industrial applications , 1999 .