Dynamics of a large system of coupled nonlinear oscillators

[1]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[2]  T. J. Walker,et al.  Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket , 1969, Science.

[3]  M. McClintock,et al.  Menstrual Synchrony and Suppression , 1971, Nature.

[4]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[5]  J. Buck,et al.  Synchronous fireflies. , 1976, Scientific American.

[6]  Y. Aizawa Synergetic Approach to the Phenomena of Mode-Locking in Nonlinear Systems , 1976 .

[7]  Shang‐keng Ma Modern Theory of Critical Phenomena , 1976 .

[8]  A. Winfree The geometry of biological time , 1991 .

[9]  Y. Yamaguchi,et al.  Self-synchronization of nonlinear oscillations in the presence of fluctuations , 1981 .

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[12]  Pierre Bergé,et al.  Order within chaos : towards a deterministic approach to turbulence , 1984 .

[13]  H. Schuster Deterministic chaos: An introduction , 1984 .

[14]  Y. Yamaguchi,et al.  Theory of self-synchronization in the presence of native frequency distribution and external noises , 1984 .

[15]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[16]  G. Bard Ermentrout,et al.  Synchronization in a pool of mutually coupled oscillators with random frequencies , 1985 .

[17]  Nonequilibrium phase transition in systems of stochastically perturbed oscillators , 1985 .

[18]  Fisher,et al.  Sliding charge-density waves as a dynamic critical phenomenon. , 1984, Physical review. B, Condensed matter.

[19]  L. Bonilla Stable nonequilibrium probability densities and phase transitions for meanfield models in the thermodynamic limit , 1987 .

[20]  Shigeru Shinomoto,et al.  Local and Grobal Self-Entrainments in Oscillator Lattices , 1987 .

[21]  Luis L. Bonilla,et al.  Self-synchronization of populations of nonlinear oscillators in the thermodynamic limit , 1987 .

[22]  B. Hao,et al.  Directions in chaos , 1987 .

[23]  Y. Kuramoto,et al.  Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities , 1987 .

[24]  Westervelt,et al.  Simple model of collective transport with phase slippage. , 1988, Physical review letters.

[25]  S. Strogatz,et al.  CORRIGENDUM: Collective synchronisation in lattices of non-linear oscillators with randomness , 1988 .

[26]  C. Taylor How do seizures begin? Clues from hippocampal slices , 1988, Trends in Neurosciences.

[27]  Hadley,et al.  Phase locking of Josephson-junction series arrays. , 1988, Physical review. B, Condensed matter.

[28]  Daido,et al.  Lower critical dimension for populations of oscillators with randomly distributed frequencies: A renormalization-group analysis. , 1988, Physical review letters.

[29]  Nonequilibrium statistical mechanics model showing self-sustained oscillations. , 1988, Physical review letters.

[30]  Paul S. Prueitt,et al.  On Synchronization and Phase Locking in Strongly Coupled Systems of Planar Rotators , 1988, Complex Syst..

[31]  Steven H. Strogatz,et al.  Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies , 1988 .

[32]  Steven H. Strogatz,et al.  Collective dynamics of coupled oscillators with random pinning , 1989 .

[33]  I. Nishikawa,et al.  Onset of Collective Rhythms in Large Populations of Coupled Oscillators , 1989 .

[34]  K. Satoh Computer Experiment on the Cooperative Behavior of a Network of Interacting Nonlinear Oscillators , 1989 .

[35]  P. Bak,et al.  A physicist's sandbox , 1989 .

[36]  M. Shiino,et al.  Synchronization of infinitely many coupled limit-cycle type oscillators , 1989 .

[37]  Hadley,et al.  Attractor crowding in oscillator arrays. , 1989, Physical review letters.

[38]  S. Strogatz,et al.  Phase diagram for the collective behavior of limit-cycle oscillators. , 1990, Physical review letters.

[39]  H. Daido,et al.  Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators , 1990 .

[40]  E. Sismondo,et al.  Synchronous, Alternating, and Phase-Locked Stridulation by a Tropical Katydid , 1990, Science.

[41]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[42]  G. Ermentrout,et al.  Amplitude response of coupled oscillators , 1990 .

[43]  S. Strogatz,et al.  Amplitude death in an array of limit-cycle oscillators , 1990 .

[44]  G. Ermentrout Oscillator death in populations of “all to all” coupled nonlinear oscillators , 1990 .

[45]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .