A Berry–Esseen theorem and Edgeworth expansions for uniformly elliptic inhomogeneous Markov chains

We prove a Berry-Esseen theorem and Edgeworth expansions for partial sums of the form SN = N ∑ n=1 fn(Xn, Xn+1), where {Xn} is a uniformly elliptic inhomogeneous Markov chain and {fn} is a sequence of uniformly bounded functions. The Berry-Esseen theorem holds without additional assumptions, while expansions of order 1 hold when {fn} is irreducible, which is an optimal condition. For higher order expansions, we then focus on two situations. The first is when the essential supremum of fn is of order O(n ) for some β ∈ (0, 1/2). In this case it turns out that expansions of any order r < 1 1−2β hold, and this condition is optimal. The second case is uniformly elliptic chains on a compact Riemannian manifold. When fn are uniformly Lipschitz continuous we show that SN admits expansions of all orders. When fn are uniformly Hölder continuous with some exponent α ∈ (0, 1), we show that SN admits expansions of all orders r < 1+α 1−α . For Hölder continues functions with α < 1 our results are new also for uniformly elliptic homogeneous Markov chains and a single functional f = fn. In fact, we show that the condition r < 1+α 1−α is optimal even in the homogeneous case.

[1]  H. H. Rugh,et al.  Cones and gauges in complex spaces: Spectral gaps and complex Perron-Frobenius theory , 2006, math/0610354.

[2]  M. Jirak Berry–Esseen theorems under weak dependence , 2016, 1606.01617.

[3]  A. Martin-Löf On the composition of elementary errors , 1994 .

[4]  Kasun Fernando,et al.  Expansions in the Local and the Central Limit Theorems for Dynamical Systems , 2020, Communications in Mathematical Physics.

[5]  P. Eichelsbacher,et al.  Moderate Deviations via Cumulants , 2010, 1012.5027.

[6]  L. Saulis,et al.  Limit theorems for large deviations , 1991 .

[7]  D. Dolgopyat Prevalence of rapid mixing in hyperbolic flows , 1998, Ergodic Theory and Dynamical Systems.

[8]  Loic Dubois,et al.  Projective metrics and contraction principles for complex cones , 2009 .

[9]  Berry-Esseen theorem and local limit theorem for non uniformly expanding maps , 2003, math/0310391.

[10]  H. Callaert,et al.  The Berry-Esseen Theorem for $U$-Statistics , 1978 .

[11]  I. Shevtsova An improvement of convergence rate estimates in the Lyapunov theorem , 2010 .

[12]  D. Dolgopyat On decay of correlations in Anosov flows , 1998 .

[13]  Michael H. Neumann,et al.  Probability and moment inequalities for sums of weakly dependent random variables, with applications , 2007 .

[14]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[15]  Loic Dubois An explicit Berry-Esséen bound for uniformly expanding maps on the interval , 2009, 0910.5343.

[16]  Jacques Rousseau-Egele,et al.  Un Theoreme de la Limite Locale Pour une Classe de Transformations Dilatantes et Monotones par Morceaux , 1983 .

[17]  L. Hervé,et al.  Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness , 2001 .

[18]  R. Gilman A Class of Functions Continuous but not Absolutely Continuous. , 1932 .

[19]  H. Callaert,et al.  An Edgeworth Expansion for $U$-Statistics , 1980 .

[20]  D. Dolgopyat,et al.  An Error Term in the Central Limit Theorem for Sums of Discrete Random Variables , 2023, International Mathematics Research Notices.

[21]  Y. Guivarc’h,et al.  Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov , 1988 .

[22]  Friedrich Götze,et al.  An Edgeworth expansion for symmetric statistics , 1997 .

[23]  Louis H. Y. Chen,et al.  Normal approximation under local dependence , 2004, math/0410104.

[24]  Guillaume Poly,et al.  A weak Cramér condition and application to Edgeworth expansions , 2017 .

[25]  S. Gouëzel Limit theorems in dynamical systems using the spectral method , 2015 .

[26]  Y. Rozanov On a Local Limit Theorem for Lattice Distributions , 1957 .

[27]  S. V. Nagaev Some Limit Theorems for Stationary Markov Chains , 1957 .

[28]  A. Barbour Asymptotic expansions based on smooth functions in the central limit theorem , 1986 .

[29]  Central limit asymptotics for shifts of finite type , 1990 .

[30]  F. Götze,et al.  The Edgeworth Expansion for $U$-Statistics of Degree Two , 1986 .

[31]  Peter Hall,et al.  Edgeworth Expansion for Student's $t$ Statistic Under Minimal Moment Conditions , 1987 .

[32]  C. Esseen Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .

[33]  E. Breuillard DISTRIBUTIONS DIOPHANTIENNES ET THÉORÈME LIMITE LOCAL SUR Rd , 2022 .

[34]  Franccoise Pene,et al.  The Nagaev-Guivarc'h method via the Keller-Liverani theorem , 2009, 0901.4617.

[35]  Pierre Baldi,et al.  On Normal Approximations of Distributions in Terms of Dependency Graphs , 1989 .

[36]  Y. Rinott,et al.  On Edgeworth expansions for dependency-neighborhoods chain structures and Stein's method , 2003 .

[37]  C. Esseen,et al.  A moment inequality with an application to the central limit theorem , 1956 .

[38]  C. Liverani Decay of correlations , 1995 .