4-8 Subdivision
暂无分享,去创建一个
[1] P. Zwart. Multivariate Splines with Nondegenerate Partitions , 1973 .
[2] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[3] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[4] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] D. H. Mellor,et al. Real time , 1981 .
[6] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[7] Alan H. Barr,et al. Accurate triangulations of deformed, intersecting surfaces , 1987, SIGGRAPH.
[8] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[9] C. Micchelli,et al. Stationary Subdivision , 1991 .
[10] C. D. Boor,et al. Box splines , 1993 .
[11] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[12] William Ribarsky,et al. Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.
[13] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[14] James K. Hahn,et al. BMRT: A Global Illumination Implementation of the RenderMan Standard , 1996, J. Graphics, GPU, & Game Tools.
[15] Peter Schröder,et al. Interactive multiresolution mesh editing , 1997, SIGGRAPH.
[16] S. L. Lee,et al. Stability and orthonormality of multivariate refinable functions , 1997 .
[17] Mark A. Duchaineau,et al. ROAMing terrain: real-time optimally adapting meshes , 1997 .
[18] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[19] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[20] Delma J. Hebert. Cyclic Interlaced Quadtree Algorithms for Quincunx Multiresolution , 1998, J. Algorithms.
[21] Ayman Habib,et al. Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..
[22] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[23] H. Ehlers. LECTURERS , 1948, Statistics for Astrophysics.
[24] Luiz Velho,et al. Using Semi-Regular 4–8 Meshes for Subdivision Surfaces , 2000, J. Graphics, GPU, & Game Tools.
[25] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[26] David G. Kirkpatrick,et al. Right-Triangulated Irregular Networks , 2001, Algorithmica.