On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions

In this paper, we establish the convergence properties for a majorized alternating direction method of multipliers for linearly constrained convex optimization problems, whose objectives contain coupled functions. Our convergence analysis relies on the generalized Mean-Value Theorem, which plays an important role to properly control the cross terms due to the presence of coupled objective functions. Our results, in particular, show that directly applying two-block alternating direction method of multipliers with a large step length of the golden ratio to the linearly constrained convex optimization problem with a quadratically coupled objective function is convergent under mild conditions. We also provide several iteration complexity results for the algorithm.

[1]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[2]  Jonathan Eckstein,et al.  Understanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives , 2015 .

[3]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[6]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[7]  Wotao Yin,et al.  Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.

[8]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[9]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[10]  Kim-Chuan Toh,et al.  A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions , 2014, Mathematical Programming.

[11]  Damek Davis,et al.  Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.

[12]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[13]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[14]  Kim-Chuan Toh,et al.  A Majorized ADMM with Indefinite Proximal Terms for Linearly Constrained Convex Composite Optimization , 2014, SIAM J. Optim..