On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions
暂无分享,去创建一个
Ying Cui | Kim-Chuan Toh | Defeng Sun | Xudong Li | K. Toh | Defeng Sun | Xudong Li | Ying Cui
[1] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[2] Jonathan Eckstein,et al. Understanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives , 2015 .
[3] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[4] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[5] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[6] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[7] Wotao Yin,et al. Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.
[8] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[9] Bingsheng He,et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.
[10] Kim-Chuan Toh,et al. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions , 2014, Mathematical Programming.
[11] Damek Davis,et al. Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.
[12] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[13] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[14] Kim-Chuan Toh,et al. A Majorized ADMM with Indefinite Proximal Terms for Linearly Constrained Convex Composite Optimization , 2014, SIAM J. Optim..