Multiscale combustion and turbulence

Abstract Multiscale physics is the interaction of different physical processes occurring at largely separated scales. In combustion, many elementary reactions combine to only a few, but still have separated time scales. In flames, owing to the presence of diffusion, time scales manifest themselves as length scales, i.e. thicknesses of reaction layers embedded within each other. For premixed flames there results a single velocity scale, the laminar burning velocity, which in turn defines a flame thickness and a flame time as global length and time scales, respectively. The laminar burning velocity represents the simplest microscale model to be used at a premixed combustion interface. While combustion is a multiscale process, this is not so evident for turbulence. Based on the picture of a cascade process traditional turbulent closure approximations treat turbulence as a single-scale problem. Attempts to model turbulent combustion in the same way by using methods developed for non-reacting turbulent flows therefore must fail, because they ignore the multiscale nature of combustion. There is, however, a long tradition and much progress in multiscale modeling of combustion, both on the macroscale as well as on the microscale level. Unfortunately much of that work is conceived only in its particular context, not as part of a multiscale approach. For instance, papers in the TURBULENT FLAMES Colloquium and the FIRE RESEARCH Colloquium at this and at previous Combustion Symposia often take the viewpoint of macroscale modeling only, while REACTION KINETICS and LAMINAR FLAMES concentrate on microscale aspects. What seems to be needed is a more explicit reference to the needs of models developed in the other parts of the community. Furthermore, research is needed to develop suitable definitions of the interface between macroscale and microscale models.

[1]  N. Peters,et al.  Numerical and asymptotic studies of the structure of premixed iso-octane flames , 1996 .

[2]  Alan R. Kerstein,et al.  Linear-eddy modelling of turbulent transport. Part 7. Finite-rate chemistry and multi-stream mixing , 1992, Journal of Fluid Mechanics.

[3]  Vladimir Gol'dshtein,et al.  Simple global reduction technique based on decomposition approach , 2008 .

[4]  X. Bai,et al.  Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames , 1998 .

[5]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[6]  Johannes Janicka,et al.  Prediction of finite chemistry effects using large eddy simulation , 2002 .

[7]  Johannes Janicka,et al.  Investigation of a strongly swirled unconfined premixed flame using LES , 2007 .

[8]  James F. Driscoll,et al.  Numerical simulation of a laboratory-scale turbulent slot flame , 2007 .

[9]  B. Bennett,et al.  Local Rectangular Refinement with Application to Nonreacting and Reacting Fluid Flow Problems , 1999 .

[10]  N. Peters,et al.  Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane , 2002 .

[11]  N. Peters,et al.  The stabilization mechanism and structure of turbulent hydrocarbon lifted flames , 2005 .

[12]  W. Kendal Bushe,et al.  Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows , 1999 .

[13]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[14]  A. Kerstein,et al.  Investigation of autoignition under thermal stratification using linear eddy modeling , 2008 .

[15]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[16]  Heinz Pitsch,et al.  A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry , 2007 .

[17]  T. Dubois,et al.  A Dynamic Multilevel Model for the Simulation of the Small Structures in Homogeneous Isotropic Turbulence , 1998, J. Sci. Comput..

[18]  Thierry Poinsot,et al.  The evolution equation for the flame surface density in turbulent premixed combustion , 1994, Journal of Fluid Mechanics.

[19]  Michael Frenklach,et al.  Detailed kinetic modeling of soot aggregate formation in laminar premixed flames , 2005 .

[20]  K. Schneider,et al.  Numerical study of thermodiffusive flame structures interacting with adiabatic walls using an adaptive multiresolution scheme , 2006 .

[21]  Rs Cant,et al.  Scalar transport modeling in large eddy simulation of turbulent premixed flames , 2002 .

[22]  Vaidyanathan Sankaran,et al.  Structure of premixed turbulent flames in the thin-reaction-zones regime , 2000 .

[23]  Thomas M. Smith,et al.  One-Dimensional Simulations of Freely Propagating Turbulent Premixed Flames , 1997 .

[24]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[25]  N. Peters Laminar flamelet concepts in turbulent combustion , 1988 .

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[27]  N Samec,et al.  Numerical modelling of premixed gaseous combustion by the boundary-domain integral method , 1999 .

[28]  Andrew J. Majda,et al.  Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales , 1994 .

[29]  N. Peters,et al.  Asymptotic structure and extinction of methaneair diffusion flames , 1988 .

[30]  Chung King Law,et al.  Combustion at a crossroads: Status and prospects , 2007 .

[31]  Boualem Khouider,et al.  A Rigorous Asymptotic Perspective on the Large Scale Simulations of Turbulent Premixed Flames , 2007, Multiscale Model. Simul..

[32]  J. Dukowicz A particle-fluid numerical model for liquid sprays , 1980 .

[33]  J. Riley,et al.  A subgrid model for equilibrium chemistry in turbulent flows , 1994 .

[34]  G. Joulin,et al.  Collective effects and dynamics of non-adiabatic flame balls , 2001 .

[35]  C. Law,et al.  Structure and extinction of convective diffusion flames with general Lewis numbers , 1983 .

[36]  Van Oijen,et al.  Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames , 2007 .

[37]  H. Pitsch,et al.  Large-eddy simulation of premixed turbulent combustion using a level-set approach , 2002 .

[38]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.

[39]  Jacqueline H. Chen,et al.  Evaluation of models for flame stretch due to curvature in the thin reaction zones regime , 2005 .

[40]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[41]  Fabian Mauss,et al.  Development of adaptive kinetics for application in combustion systems , 2002 .

[42]  Johannes Janicka,et al.  Large-eddy simulation of a bluff-body stabilized nonpremixed flame , 2006 .

[43]  Vladimir Gol'dshtein,et al.  On a modified version of ILDM approach: asymptotic analysis based on integral manifolds , 2006 .

[44]  Heinz Pitsch,et al.  Conditional filtering method for large-eddy simulation of turbulent nonpremixed combustion , 2005 .

[45]  Robert W. Bilger,et al.  The structure of turbulent nonpremixed flames , 1989 .

[46]  S. Sarkar,et al.  Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation , 2005 .

[47]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[48]  N. Peters,et al.  Numerical and asymptotic studies of the structure of stoichiometric and lean premixed heptane flames , 1997 .

[49]  V. Sankaran,et al.  Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime , 2005 .

[50]  Forman A. Williams,et al.  The asymptotic structure of stoichiometric methaneair flames , 1987 .

[51]  Heinz Pitsch,et al.  Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion , 2005 .

[52]  Yoshikazu Ito,et al.  Local flame structure in the well-stirred reactor regime , 2002 .

[53]  Lipo Wang,et al.  Length-scale distribution functions and conditional means for various fields in turbulence , 2008, Journal of Fluid Mechanics.

[54]  Large-eddy simulation of a counterflow configuration with and without combustion , 2000 .

[55]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[56]  C. Law,et al.  The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation , 2007 .

[57]  Ping Wang,et al.  Large eddy simulation of turbulent premixed flames using level-set G-equation , 2005 .

[58]  L. D. Goey,et al.  A flamelet analysis of the burning velocity of premixed turbulent expanding flames , 2005 .

[59]  De Goey,et al.  Analysis of the asymptotic structure of stoichiometric premixed CH4–H2–air flames , 2007 .

[60]  Michele Benzi,et al.  An implicit compact scheme solver for two-dimensional multicomponent flows , 2007 .

[61]  Suresh Menon,et al.  Simulation of spray–turbulence–flame interactions in a lean direct injection combustor , 2008 .

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[64]  Kai Schneider,et al.  An adaptive multiresolution method for combustion problems: application to flame ball–vortex interaction , 2005 .

[65]  Yasuhiro Mizobuchi,et al.  A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame , 2005 .

[66]  Christian Hasse,et al.  A two mixture fraction flamelet model applied to split injections in a DI Diesel engine , 2005 .

[67]  Johannes Janicka,et al.  Towards a classification of models for the numerical simulation of premixed combustion based on a generalized regime diagram , 2006 .

[68]  P. Pelcé,et al.  Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames , 1982, Journal of Fluid Mechanics.

[69]  V. L. Zimont,et al.  Theory of turbulent combustion of a homogeneous fuel mixture at high reynolds numbers , 1979 .

[70]  Johannes Janicka,et al.  Large Eddy Simulation of Turbulent Combustion Systems , 2005 .

[71]  V E Beckner,et al.  Numerical simulation of a laboratory-scale turbulent V-flame. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Rupert Klein,et al.  A generalized level-set/in-cell-reconstruction approach for accelerating turbulent premixed flames , 2003 .

[73]  P. Pelcé,et al.  Vibratory instability of cellular flames propagating in tubes , 1992, Journal of Fluid Mechanics.

[74]  Forman A. Williams,et al.  Asymptotic analyses of stoichiometric and lean hydrogen-air flames , 1994 .

[75]  Norbert Peters,et al.  Influence of curvature on the onset of autoignition in a corrugated counterflow mixing field , 2005 .

[76]  Mitchell D. Smooke,et al.  An implicit compact scheme solver with application to chemically reacting flows , 2005 .

[77]  David E. Keyes,et al.  Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames , 1986 .

[78]  Stephen B. Pope,et al.  Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D) , 2004 .

[79]  E Weinan,et al.  The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems , 2005, Multiscale Model. Simul..

[80]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[81]  Paul A. Libby,et al.  Countergradient Diffusion in Premixed Turbulent Flames , 1981 .

[82]  S. Menon,et al.  Large-Eddy Simulation of Pollutant Emission in a DOE-HAT Combustor , 2004 .

[83]  F. Nicoud,et al.  Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows , 1999 .

[84]  Andrew J. Majda,et al.  Systematic multiscale models for deep convection on mesoscales , 2006 .

[85]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests , 2002 .

[86]  Mamoru Tanahashi,et al.  Coherent fine-scale eddies in turbulent premixed flames , 2000 .

[87]  Norbert Peters,et al.  Laser optical investigation of turbulent transport of temperature ahead of the preheat zone in a premixed flame , 2004 .

[88]  H. Pitsch,et al.  Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D) , 2000 .

[89]  Heinz Pitsch,et al.  IMPROVED POLLUTANT PREDICTIONS IN LARGE-EDDY SIMULATIONS OF TURBULENT NON-PREMIXED COMBUSTION BY CONSIDERING SCALAR DISSIPATION RATE FLUCTUATIONS , 2002 .

[90]  Andrew J. Majda,et al.  Systematic Multiscale Models for the Tropics , 2003 .

[91]  H. Pitsch,et al.  Modeling autoignition in non-premixed turbulent combustion using a stochastic flamelet approach , 2005 .

[92]  D. Vlachos A Review of Multiscale Analysis: Examples from Systems Biology, Materials Engineering, and Other Fluid–Surface Interacting Systems , 2005 .

[93]  A. Chtchelkanova,et al.  Interaction of a shock with a sinusoidally perturbed flame , 1999 .

[94]  N. Peters,et al.  The Effect of Pressure Variations on Premixed Flames , 1983 .

[95]  Jochen Fröhlich,et al.  An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls , 1999 .

[96]  J. Janicka,et al.  Large-Eddy Simulation of a Turbulent Hydrogen Diffusion Flame , 1999, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[97]  M. Germano A proposal for a redefinition of the turbulent stresses in the filtered Navier–Stokes equations , 1986 .

[98]  Marcus Herrmann,et al.  A Eulerian level set/vortex sheet method for two-phase interface dynamics , 2005 .

[99]  Dionisios G. Vlachos,et al.  Front propagation at low temperatures and multiscale modeling for the catalytic combustion of H2 on Pt , 2003 .

[100]  B. Hjertager,et al.  On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , 1977 .

[101]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[102]  Ishwar K. Puri,et al.  A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air , 1988 .

[103]  Bernard J. Matkowsky,et al.  Flames as gasdynamic discontinuities , 1982, Journal of Fluid Mechanics.

[104]  Yi Sun,et al.  Heterogeneous Multiscale Methods for Interface Tracking of Combustion Fronts , 2006, Multiscale Model. Simul..

[105]  Suresh Menon,et al.  Explicit small-scale velocity simulation for high-Re turbulent flows , 2006, J. Comput. Phys..

[106]  Johannes Janicka,et al.  MIXING ANALYSIS OF A SWIRLING RECIRCULATING FLOW USING DNS AND EXPERIMENTAL DATA , 2006, Proceeding of Fourth International Symposium on Turbulence and Shear Flow Phenomena.

[107]  Rs Cant,et al.  A flame surface density approach to large-eddy simulation of premixed turbulent combustion , 2000 .

[108]  J. B. Moss,et al.  Flamelet Crossing Frequencies and Mean Reaction Rates in Premixed Turbulent Combustion , 1984 .

[109]  Tianfeng Lu,et al.  Structure of a spatially developing turbulent lean methane–air Bunsen flame , 2007 .

[110]  Johannes Janicka,et al.  Investigation of combustion noise using a LES/CAA hybrid approach , 2007 .

[111]  C. Gibson Fine Structure of Scalar Fields Mixed by Turbulence. I. Zero‐Gradient Points and Minimal Gradient Surfaces , 1968 .

[112]  Heinz Pitsch,et al.  A consistent level set formulation for large-eddy simulation of premixed turbulent combustion , 2005 .

[113]  D. Spalding Mixing and chemical reaction in steady confined turbulent flames , 1971 .

[114]  Heinz Pitsch,et al.  Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines , 2007 .

[115]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[116]  Angela Violi,et al.  Modeling of soot particle inception in aromatic and aliphatic premixed flames , 2004 .

[117]  Marcus Herrmann,et al.  A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids , 2008, J. Comput. Phys..

[118]  Pierre Haldenwang,et al.  Dynamically adapted mesh refinement for combustion front tracking , 2002 .

[119]  G. Bruneaux,et al.  Combustion structure of free and wall-impinging diesel jets by simultaneous laser-induced fluorescence of formaldehyde, poly-aromatic hydrocarbons, and hydroxides , 2008 .

[120]  Evatt R. Hawkes,et al.  Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics ☆ , 2007 .

[121]  G. Searby Acoustic Instability in Premixed Flames , 1992 .

[122]  S. Menon,et al.  Large eddy simulation of bluff-body stabilized swirling non-premixed flames , 2007 .

[123]  B. M. Fulk MATH , 1992 .

[124]  Lipo Wang,et al.  The length-scale distribution function of the distance between extremal points in passive scalar turbulence , 2006, Journal of Fluid Mechanics.

[125]  Johannes Janicka,et al.  Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES , 2005 .

[126]  Alan R. Kerstein,et al.  Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields , 1991, Journal of Fluid Mechanics.

[127]  Dominique Thévenin,et al.  Three-dimensional direct simulations and structure of expanding turbulent methane flames , 2005 .

[128]  W. P. Jones,et al.  Large Eddy simulation of a turbulent non-premixed flame , 2001 .

[129]  Joseph F. Grcar,et al.  Numerical simulation of premixed turbulent methane combustion , 2002 .

[130]  A. Violi,et al.  Combustion-generated nanoparticles produced in a benzene flame: a multiscale approach. , 2006, The Journal of chemical physics.

[131]  Jacqueline H. Chen,et al.  Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame , 2008 .

[132]  Norbert Peters,et al.  Transient pressure effects in the evolution equation for premixed flame fronts , 1994 .

[133]  Vladimir Gol'dshtein,et al.  Comparative analysis of two asymptotic approaches based on integral manifolds , 2004 .

[134]  A. Majda,et al.  A multiscale model for tropical intraseasonal oscillations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[135]  Philippe Marmottant,et al.  On spray formation , 2004, Journal of Fluid Mechanics.

[136]  P. Moin,et al.  Combustion instability due to the nonlinear interaction between sound and flame , 2003, Journal of Fluid Mechanics.