Hitting Time Analysis for Fault-Tolerant Communication at Nanoscale in Future Multiprocessor Platforms

This paper investigates the on-chip stochastic communication and proposes an analytical model for computing its mean hitting time. Toward this end, we model the on-chip stochastic communication of any source-destination pair as a branching and annihilating random walk taking place on a finite mesh. The evolution of this branching process is studied via a master equation which helps us estimate the mean number of communication rounds needed to reach a destination node from a particular source node. Besides the probabilistic performance analysis, we also present experimental results for two concrete platforms and assess the potential of stochastic communication for future nanotechnologies.

[1]  Cristian Constantinescu,et al.  Trends and Challenges in VLSI Circuit Reliability , 2003, IEEE Micro.

[2]  Axel Jantsch,et al.  Networks on chip , 2003 .

[3]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[4]  Justin Schauer,et al.  High Speed and Low Energy Capacitively Driven On-Chip Wires , 2008, IEEE J. Solid State Circuits.

[5]  Diana Marculescu,et al.  Modeling and Optimization for Soft-Error Reliability of Sequential Circuits , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Norman T. J. Bailey,et al.  The Mathematical Theory of Infectious Diseases , 1975 .

[7]  Anna R. Karlin,et al.  Bounds on the cover time , 1989 .

[8]  Noga Alon,et al.  Many random walks are faster than one , 2007, SPAA '08.

[9]  J. Maiz,et al.  Characterization of multi-bit soft error events in advanced SRAMs , 2003, IEEE International Electron Devices Meeting 2003.

[10]  Axel Jantsch,et al.  Interconnect-Centric Design for Advanced SOC and NOC , 2010 .

[11]  Radu Marculescu,et al.  Stochastic Communication: A New Paradigm for Fault-Tolerant Networks-on-Chip , 2007, VLSI Design.

[12]  Douglas E. Comer Computer networks and lnternets , 1996 .

[13]  Alan M. Frieze,et al.  Multiple Random Walks in Random Regular Graphs , 2009, SIAM J. Discret. Math..

[14]  Tretyakov,et al.  Extinction, survival, and dynamical phase transition of branching annihilating random walk. , 1992, Physical review letters.

[15]  Radu Marculescu,et al.  The Chip Is the Network: Toward a Science of Network-on-Chip Design , 2009, Found. Trends Electron. Des. Autom..

[16]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[17]  Cardy,et al.  Theory of Branching and Annihilating Random Walks. , 1996, Physical review letters.

[18]  Natalie D. Enright Jerger,et al.  Outstanding Research Problems in NoC Design: System, Microarchitecture, and Circuit Perspectives , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  M. Natiello,et al.  Poisson approximation to density dependent stochastic processes. A numerical implementation and test , 2003 .

[20]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[21]  Anne-Marie Kermarrec,et al.  Epidemic information dissemination in distributed systems , 2004, Computer.

[22]  Jaume Segura,et al.  CMOS Electronics: How It Works, How It Fails , 2004 .

[23]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[24]  Ieee Circuits,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems information for authors , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[25]  James D. Meindl,et al.  Interconnect Technology and Design for Gigascale Integration , 2003 .

[26]  Sarita V. Adve,et al.  The impact of technology scaling on lifetime reliability , 2004, International Conference on Dependable Systems and Networks, 2004.

[27]  Diana Marculescu,et al.  Energy bounds for fault-tolerant nanoscale designs , 2005, Design, Automation and Test in Europe.

[28]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[29]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[30]  Christos Gkantsidis,et al.  Random walks in peer-to-peer networks , 2004, IEEE INFOCOM 2004.

[31]  Alain Bui,et al.  On Time Analysis of Random Walk Based Token Circulation Algorithms , 2005, ISSADS.

[32]  Huaxi Gu,et al.  Fault tolerant routing algorithm based on the artificial potential field model in Network-on-Chip , 2010, Appl. Math. Comput..

[33]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[34]  J. Jopling,et al.  Erratic fluctuations of sram cache vmin at the 90nm process technology node , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[35]  M.E. Porter,et al.  Predicting neutron induced soft error rates: Evaluation of accelerated ground based test methods , 2008, 2008 IEEE International Reliability Physics Symposium.

[36]  Radu Marculescu,et al.  On-Chip Stochastic Communication , 2003, DATE.

[37]  Radu Marculescu,et al.  Hitting Time Analysis for Stochastic Communication , 2008, NanoNet.

[38]  Ziv Bar-Yossef,et al.  Random sampling from a search engine's index , 2006, WWW '06.

[39]  Radu Marculescu,et al.  Quantum-Like Effects in Network-on-Chip Buffers Behavior , 2007, 2007 44th ACM/IEEE Design Automation Conference.