GAMESS as a free quantum-mechanical platform for drug research.

Driven by a steady improvement of computational hardware and significant progress in ab initio method development, quantum-mechanical approaches can now be applied to large biochemical systems and drug design. We review the methods implemented in GAMESS, which are suitable to calculate large biochemical systems. An emphasis is put on the fragment molecular orbital method (FMO) and quantum mechanics interfaced with molecular mechanics (QM/MM). The use of FMO in the protein-ligand binding, structure-activity relationship (SAR) studies, fragment- and structure-based drug design (FBDD/SBDD) is discussed in detail.

[1]  Y. Aoki,et al.  Counter‐ion effects of A‐ and B‐type poly(dG)·Poly(dC) and poly(dA)·Poly(dT) DNA by elongation method , 2012 .

[2]  Jan H. Jensen,et al.  Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods. , 2010, The journal of physical chemistry. A.

[3]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[4]  Ian J. Bush,et al.  The GAMESS-UK electronic structure package: algorithms, developments and applications , 2005 .

[5]  Masami Uebayasi,et al.  The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. , 2007, The journal of physical chemistry. A.

[6]  György G. Ferenczy,et al.  Quantum mechanical computations on very large molecular systems: The local self‐consistent field method , 1994, J. Comput. Chem..

[7]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[8]  Takeshi Ishikawa,et al.  Partial energy gradient based on the fragment molecular orbital method: Application to geometry optimization , 2010 .

[9]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[10]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[11]  A. H. Vries,et al.  Direct reaction field force field: A consistent way to connect and combine quantum-chemical and classical descriptions of molecules , 1996 .

[12]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[13]  Spencer R Pruitt,et al.  Open-Shell Formulation of the Fragment Molecular Orbital Method. , 2010, Journal of chemical theory and computation.

[14]  Jacopo Tomasi,et al.  The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution , 2001 .

[15]  Kenneth M. Merz,et al.  Drug Design : Structure-and Ligand-Based Approaches , 2017 .

[16]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[17]  M. Gordon,et al.  Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations. , 2007, The Journal of chemical physics.

[18]  M. Aida,et al.  A polarizable mixed Hamiltonian model of electronic structure for micro-solvated excited states. I. Energy and gradients formulation and application to formaldehyde (1A2) , 2002 .

[19]  Jan H. Jensen,et al.  Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions , 2007 .

[20]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[21]  Bing Wang,et al.  The role of quantum mechanics in structure-based drug design. , 2007, Drug discovery today.

[22]  Mark S. Gordon,et al.  DEVELOPMENTS IN PARALLEL ELECTRONIC STRUCTURE THEORY , 2007 .

[23]  Ajay N. Jain Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. , 2003, Journal of medicinal chemistry.

[24]  Jan H. Jensen,et al.  Continuum solvation of large molecules described by QM/MM: a semi-iterative implementation of the PCM/EFP interface , 2003 .

[25]  Mark S. Gordon,et al.  A parallel distributed data CPHF algorithm for analytic Hessians , 2007, J. Comput. Chem..

[26]  C David Sherrill,et al.  Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes. , 2011, Journal of chemical theory and computation.

[27]  T. Slater,et al.  An introduction to free radical biochemistry. , 1993, British medical bulletin.

[28]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[29]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[30]  M. Congreve,et al.  Recent developments in fragment-based drug discovery. , 2008, Journal of medicinal chemistry.

[31]  Min Zhou,et al.  Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. , 2004, Angewandte Chemie.

[32]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[33]  K. Fujimura,et al.  The Role of Fluorine Atoms in a Fluorinated Prostaglandin Agonist , 2010, ChemMedChem.

[34]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[35]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[36]  Jan H. Jensen,et al.  Prediction and rationalization of protein pKa values using QM and QM/MM methods. , 2005, The journal of physical chemistry. A.

[37]  Evan G. Buchanan,et al.  Evolution of amide stacking in larger γ-peptides: triamide H-bonded cycles. , 2011, The journal of physical chemistry. A.

[38]  Yoshihisa Inoue,et al.  Cl–π Interactions in Protein–Ligand Complexes , 2009 .

[39]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[40]  Jiali Gao,et al.  Combined Quantum Mechanical and Molecular Mechanical Methods , 1999 .

[41]  Donald G Truhlar,et al.  Predicting aqueous free energies of solvation as functions of temperature. , 2006, The journal of physical chemistry. B.

[42]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[43]  James J. P. Stewart,et al.  Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.

[44]  Jan H. Jensen,et al.  The Effective Fragment Molecular Orbital Method for Fragments Connected by Covalent Bonds , 2012, PloS one.

[45]  Deli Liu,et al.  Binding Interaction Analysis of the Active Site and Its Inhibitors for Neuraminidase (N1 Subtype) of Human Influenza Virus by the Integration of Molecular Docking, FMO Calculation and 3D-QSAR CoMFA Modeling , 2008, J. Chem. Inf. Model..

[46]  Brett M. Bode,et al.  MacMolPlt: a graphical user interface for GAMESS. , 1998, Journal of molecular graphics & modelling.

[47]  F. J. Luque,et al.  Theoretical Methods for the Representation of Solvent , 1996 .

[48]  Kazuo Kitaura,et al.  A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. , 2011, The Journal of chemical physics.

[49]  Kazuo Kitaura,et al.  Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method , 2012 .

[50]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[51]  Vladimir B. Sulimov,et al.  Semiempirical calculations of binding enthalpy for protein-ligand complexes , 2004 .

[52]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[53]  Arieh Warshel,et al.  Consistent Calculations of pKa's of Ionizable Residues in Proteins: Semi-microscopic and Microscopic Approaches , 1997 .

[54]  Stanley K. Burt,et al.  Flexible effective fragment QM/MM method: Validation through the challenging tests , 2003, J. Comput. Chem..

[55]  M. Grütter,et al.  The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analog inhibitor. , 1991, Journal of structural biology.

[56]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[57]  Mark Whittaker,et al.  Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method , 2011, J. Cheminformatics.

[58]  Ulf Ryde,et al.  Do quantum mechanical energies calculated for small models of protein-active sites converge? , 2009, The journal of physical chemistry. A.

[59]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[60]  Mark S. Gordon,et al.  The Parallel Implementation of a Full Configuration Interaction Program , 2003 .

[61]  Mark S. Gordon,et al.  The Distributed Data Interface in GAMESS , 2000 .

[62]  Andreas Ebneth,et al.  Discovery and structure-activity relationship of potent and selective covalent inhibitors of transglutaminase 2 for Huntington's disease. , 2012, Journal of medicinal chemistry.

[63]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[64]  Jan H. Jensen,et al.  Very fast prediction and rationalization of pKa values for protein–ligand complexes , 2008, Proteins.

[65]  D. Ullmann,et al.  HTS reporter displacement assay for fragment screening and fragment evolution toward leads with optimized binding kinetics, binding selectivity, and thermodynamic signature. , 2011, Methods in enzymology.

[66]  Jan H. Jensen,et al.  The determinants of carboxyl pKa values in turkey ovomucoid third domain , 2004, Proteins.

[67]  I. Adamovic,et al.  Dynamic polarizability, dispersion coefficient C6 and dispersion energy in the effective fragment potential method , 2005 .

[68]  Hiroshi Chuman,et al.  Correlation Analyses on Binding Affinity of Sialic Acid Analogues with Influenza Virus Neuraminidase-1 Using ab Initio MO Calculations on Their Complex Structures , 2010, J. Chem. Inf. Model..

[69]  Mark S Gordon,et al.  Large-Scale MP2 Calculations on the Blue Gene Architecture Using the Fragment Molecular Orbital Method. , 2012, Journal of chemical theory and computation.

[70]  Milan Hodošček,et al.  A Hybrid QM−MM Potential Employing Hartree−Fock or Density Functional Methods in the Quantum Region , 1999 .

[71]  B. Grigorenko,et al.  Modeling of biomolecular systems with the quantum mechanical and molecular mechanical method based on the effective fragment potential technique: Proposal of flexible fragments , 2002 .

[72]  Kazuo Kitaura,et al.  Structural and interaction analysis of helical heparin oligosaccharides with the fragment molecular orbital method , 2009 .

[73]  Jan H. Jensen,et al.  Hydrogen bonding is the prime determinant of carboxyl pKa values at the N‐termini of α‐helices , 2006 .

[74]  A. Imamura,et al.  Efficient and accurate calculations on the electronic structure of B-type poly(dG).poly(dC) DNA by elongation method: first step toward the understanding of the biological properties of aperiodic DNA. , 2007, The Journal of chemical physics.

[75]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[76]  Kazuo Kitaura,et al.  Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. , 2012, The Journal of chemical physics.

[77]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[78]  Kazuya Ishimura,et al.  MPI/OpenMP Hybrid Parallel Algorithm for Hartree−Fock Calculations , 2010 .

[79]  Kohji Itoh,et al.  Correlation Analyses on Binding Affinity of Sialic Acid Analogues and Anti-Influenza Drugs with Human Neuraminidase Using ab Initio MO Calculations on Their Complex Structures - LERE-QSAR Analysis (IV) , 2011, J. Chem. Inf. Model..

[80]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[81]  M Hodoscek,et al.  Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics. , 1998, Biophysical chemistry.

[82]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[83]  Mark McGann,et al.  FRED Pose Prediction and Virtual Screening Accuracy , 2011, J. Chem. Inf. Model..

[84]  R. Friesner,et al.  Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. , 2005, Annual review of physical chemistry.

[85]  L. Slipchenko,et al.  Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set. , 2012, Journal of chemical theory and computation.

[86]  Abdul-Rahman Allouche,et al.  Gabedit—A graphical user interface for computational chemistry softwares , 2011, J. Comput. Chem..

[87]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[88]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[89]  K. Mori,et al.  Computational Insights into Binding of Bisphosphates to Farnesyl Pyrophosphate Synthase , 2011, Current medicinal chemistry.

[90]  Kazuo Kitaura,et al.  Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations. , 2010, Journal of the American Chemical Society.

[91]  Yuto Komeiji,et al.  Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromone-binding protein , 2005, Comput. Biol. Chem..

[92]  Jiali Gao,et al.  The Design of a Next Generation Force Field: The X-POL Potential. , 2007, Journal of chemical theory and computation.

[93]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[94]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[95]  Kenneth M. Merz,et al.  Importance of dispersion and electron correlation in ab initio protein folding. , 2009, The journal of physical chemistry. B.

[96]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[97]  Jan H. Jensen,et al.  Chemically accurate protein structures: Validation of protein NMR structures by comparison of measured and predicted pKa values , 2006, Journal of biomolecular NMR.

[98]  K. Kitaura,et al.  Energy decomposition analysis in solution based on the fragment molecular orbital method. , 2012, The journal of physical chemistry. A.

[99]  Paul G Wyatt,et al.  Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. , 2008, Journal of medicinal chemistry.

[100]  Ye Mei,et al.  Structure and dynamics of a dizinc metalloprotein: effect of charge transfer and polarization. , 2011, The journal of physical chemistry. B.

[101]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[102]  J. Markley,et al.  Comparison of the accuracy of protein solution structures derived from conventional and network‐edited NOESY data , 1995, Protein science : a publication of the Protein Society.

[103]  D S Goodsell,et al.  Automated docking of flexible ligands: Applications of autodock , 1996, Journal of molecular recognition : JMR.

[104]  HIV-1 GP120 V3 conformational and informational entropies , 2006, Journal of molecular modeling.

[105]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[106]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[107]  Jan H. Jensen,et al.  QM/MM Boundaries Across Covalent Bonds: A Frozen Localized Molecular Orbital-Based Approach for the Effective Fragment Potential Method , 2000 .

[108]  Andrew L. Rohl,et al.  GDIS: a visualization program for molecular and periodic systems , 2005 .

[109]  Mark S. Gordon,et al.  The distributed data SCF , 2002 .

[110]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[111]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[112]  Qiang Cui,et al.  Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: A critical test with glycine , 2002 .

[113]  Ulf Ryde,et al.  Quantum refinement of [FeFe] hydrogenase indicates a dithiomethylamine ligand. , 2010, Journal of the American Chemical Society.

[114]  Mark Whittaker,et al.  Compound Design by Fragment‐Linking , 2011, Molecular informatics.

[115]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[116]  J. Wood,et al.  Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. , 2000, Chemistry & biology.

[117]  Kazuo Kitaura,et al.  CHAPTER 1 – Theoretical development of the fragment molecular orbital (FMO) method , 2006 .

[118]  Kenneth M Merz,et al.  Quantum mechanics in structure-based drug design. , 2006, Current opinion in drug discovery & development.

[119]  Toshio Fujita,et al.  Novel Quantitative Structure-Activity Studies of HIV-1 Protease Inhibitors of the Cyclic Urea Type Using Descriptors Derived from Molecular Dynamics and Molecular Orbital Calculations , 2009 .

[120]  K. Kitaura,et al.  Mathematical Formulation of the Fragment Molecular Orbital Method , 2011 .

[121]  Mark S. Gordon,et al.  Recent Advances in QM and QM/MM Methods , 2003, International Conference on Computational Science.

[122]  Yoshihiro Matsumoto,et al.  Intrinsic Edge Asymmetry in Narrow Zigzag Hexagonal Heteroatomic Nanoribbons Causes their Subtle Uniform Curvature , 2012 .

[123]  Jacopo Tomasi,et al.  An Integrated Effective Fragment—Polarizable Continuum Approach to Solvation: Theory and Application to Glycine , 2002 .

[124]  K. Merz,et al.  Model for the fast estimation of basis set superposition error in biomolecular systems. , 2011, The Journal of chemical physics.

[125]  Arieh Warshel,et al.  Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin. , 2003, Journal of the American Chemical Society.

[126]  Yuichi Inadomi,et al.  DNA and estrogen receptor interaction revealed by fragment molecular orbital calculations. , 2007, The journal of physical chemistry. B.

[127]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[128]  末永 正彦,et al.  PC GAMESSのための新しい計算化学統合環境 Facio の開発 , 2005 .

[129]  Sven Leyffer,et al.  Heuristic static load-balancing algorithm applied to the fragment molecular orbital method , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[130]  Mark Whittaker,et al.  Discovery of a Novel Hsp90 Inhibitor by Fragment Linking , 2010, ChemMedChem.

[131]  J. Markley,et al.  Properties of conserved amino acid residues in tandem homologous protein domains. Hydrogen-1 nuclear magnetic resonance studies of the histidines of chicken ovomucoid. , 1982, Biochemistry.

[132]  B. Berne,et al.  Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. , 2008, Journal of the American Chemical Society.

[133]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[134]  Masato Kobayashi,et al.  Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix. , 2006, The Journal of chemical physics.

[135]  Kazuo Kitaura,et al.  Cluster hydration model for binding energy calculations of protein-ligand complexes. , 2009, The journal of physical chemistry. B.

[136]  Mark S Gordon,et al.  Effective fragment potential study of the interaction of DNA bases. , 2011, The journal of physical chemistry. A.

[137]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[138]  Ziniu Yu,et al.  Rational questing for potential novel inhibitors of FabK from Streptococcus pneumoniae by combining FMO calculation, CoMFA 3D-QSAR modeling and virtual screening , 2011, Journal of molecular modeling.

[139]  Martin Karplus,et al.  Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations , 2000 .

[140]  Jan H. Jensen,et al.  FragIt: A Tool to Prepare Input Files for Fragment Based Quantum Chemical Calculations , 2012, PloS one.

[141]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[142]  Y. Aoki,et al.  An elongation method for large systems toward bio-systems. , 2012, Physical chemistry chemical physics : PCCP.

[143]  Kazuo Kitaura,et al.  Exploring chemistry with the fragment molecular orbital method. , 2012, Physical chemistry chemical physics : PCCP.

[144]  H. Nakatsuji,et al.  Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function. , 2007, Physical review letters.

[145]  Ye Mei,et al.  Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin. , 2008, Biophysical journal.

[146]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[147]  B. Tidor,et al.  Rational Approaches to Improving Selectivity in Drug Design , 2012, Journal of medicinal chemistry.

[148]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[149]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[150]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[151]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[152]  György G. Ferenczy,et al.  Thermodynamics of Fragment Binding , 2012, J. Chem. Inf. Model..

[153]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[154]  Dmitri G. Fedorov,et al.  Reducing the scaling of the fragment molecular orbital method using the multipole method , 2012 .

[155]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[156]  Mark S Gordon,et al.  Geometry optimizations of open-shell systems with the fragment molecular orbital method. , 2012, The journal of physical chemistry. A.

[157]  Feliu Maseras,et al.  IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states , 1995, J. Comput. Chem..

[158]  K. Kitaura,et al.  Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient. , 2012, The Journal of chemical physics.

[159]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[160]  Kaori Fukuzawa,et al.  Development of the four-body corrected fragment molecular orbital (FMO4) method , 2012 .

[161]  Daniel M. Chipman,et al.  Charge penetration in dielectric models of solvation , 1997 .

[162]  Junwei Zhang,et al.  VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening , 2006, J. Chem. Inf. Model..

[163]  Guohui Li,et al.  pKa calculations with QM/MM free energy perturbations , 2003 .

[164]  K. Kitaura,et al.  Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method. , 2011, The Journal of chemical physics.

[165]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[166]  Hui Li,et al.  Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation , 2009, J. Comput. Chem..

[167]  Yuriko Aoki,et al.  A theoretical synthesis of polymers by using uniform localization of molecular orbitals: Proposal of an elongation method , 1991 .

[168]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[169]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[170]  Ioan Andricioaei,et al.  On the calculation of entropy from covariance matrices of the atomic fluctuations , 2001 .

[171]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on red fluorescent proteins (DsRed and mFruits). , 2009, The journal of physical chemistry. B.

[172]  Mark S. Gordon,et al.  SIMOMM: An Integrated Molecular Orbital/Molecular Mechanics Optimization Scheme for Surfaces , 1999 .

[173]  Mark S. Gordon,et al.  Solvent Effects on the SN2 Reaction: Application of the Density Functional Theory-Based Effective Fragment Potential Method , 2005 .

[174]  Kaori Fukuzawa,et al.  Developments and applications of ABINIT-MP software based on the fragment molecular orbital method , 2006 .

[175]  Kazuo Kitaura,et al.  Molecular recognition mechanism of FK506 binding protein: An all‐electron fragment molecular orbital study , 2007, Proteins.

[176]  Jerzy Leszczynski,et al.  MaSK: A visualization tool for teaching and research in computational chemistry , 2009 .

[177]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[178]  Mark S. Gordon,et al.  Energy Decomposition Analyses for Many-Body Interaction and Applications to Water Complexes , 1996 .

[179]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[180]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[181]  Allen J. Flynn,et al.  Exploring the role of the active site cysteine in human muscle creatine kinase. , 2006, Biochemistry.

[182]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[183]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[184]  Mark S. Gordon,et al.  Solvation of the Menshutkin Reaction: A Rigorous Test of the Effective Fragment Method , 1999 .

[185]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[186]  David R. Bowler,et al.  Accuracy of order-N density-functional theory calculations on DNA systems using CONQUEST , 2008 .

[187]  Kazuo Kitaura,et al.  Binding of influenza A virus hemagglutinin to the sialoside receptor is not controlled by the homotropic allosteric effect. , 2010, The journal of physical chemistry. B.

[188]  M. Naor,et al.  Determinants of cysteine pKa values in creatine kinase and α1‐antitrypsin , 2004 .

[189]  Amedeo Caflisch,et al.  Quantum mechanical methods for drug design. , 2010, Current topics in medicinal chemistry.

[190]  Andrew Streitwieser,et al.  Introduction to organic chemistry , 1976 .

[191]  Yuri Alexeev,et al.  Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method , 2011 .

[192]  Kazuo Kitaura,et al.  CH/π hydrogen bonds play a role in ligand recognition and equilibrium between active and inactive states of the β2 adrenergic receptor: an ab initio fragment molecular orbital (FMO) study. , 2011, Bioorganic & medicinal chemistry.

[193]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[194]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[195]  Kazuo Kitaura,et al.  All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction. , 2006, The journal of physical chemistry. B.

[196]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[197]  György G Ferenczy,et al.  Thermodynamics guided lead discovery and optimization. , 2010, Drug discovery today.