Reliability-Aware Circuit Design Methodology for Beyond-5G Communication Systems

This paper focuses on efficient reliability analysis methodologies applicable for beyond-5G communication systems demonstrated on prospective terahertz (THz) technologies. Recently, a lot of the research interests have grown on optoelectronic integration which requires simultaneous management of electronic and optical modules. These technologies are evolving very rapidly, providing higher complexity, thereby increasing their susceptibility to stress environments (i.e., mutual self-heating) and finally requiring both robustness assessment and lifetime prediction under different operating conditions. Consequently, long-time reliability is a major issue. Extensive reliability assessment needs novel design methodologies that can provide reliability-aware optimization at the design level. This review discusses an extensive physics-based methodology for reliability prediction and analysis of degradation mechanisms in integrated-circuit technologies. Circuit-level design and optimization methodologies are illustrated by taking into account reliability-aware design techniques. Application examples and results are presented for an InP DHBT process, a viable technological solution for beyond-5G and THz applications.

[1]  Chien-Nan Jimmy Liu,et al.  Reliability-aware design automation flow for analog circuits , 2015, 2015 International SoC Design Conference (ISOCC).

[2]  Chenming Hu IC reliability simulation , 1992 .

[3]  D. Celi,et al.  Modeling and parameter extraction of SiGe: C HBT's with HICUM for the emerging terahertz era , 2010, The 5th European Microwave Integrated Circuits Conference.

[4]  D.A. Sunderland,et al.  Acceleration parameters and reliability of SiGe HBTs during long-term forward-biased operation , 2004, JEDEC (formerly the GaAs REL Workshop) ROCS Workshop, 2004..

[5]  O. Drisse,et al.  Submicron InP DHBT Technology for High-Speed High-Swing Mixed-Signal ICs , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.

[6]  W. Deal,et al.  Recent progress in scaling InP HEMT TMIC technology to 850 GHz , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[7]  Sule Ozev,et al.  Design-Time Reliability Enhancement Using Hotspot Identification for RF Circuits , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  C Maneux,et al.  Benchmarking of HBT models for InP based DHBT modeling , 2010, 2010 27th International Conference on Microelectronics Proceedings.

[9]  Cyril C. Renaud,et al.  TeraHertz Photonics for Wireless Communications , 2015, Journal of Lightwave Technology.

[10]  J. B. Boos,et al.  High-power High-linearity Flip-chip Bonded Modified Uni-traveling Carrier Photodiode References and Links , 2022 .

[11]  Composition-Graded AlInP/AlGaAsSb/InP Type-II DHBTs With $f_{T}/f_{\rm MAX} = \hbox{450/510}\ \hbox{GHz}$ , 2013, IEEE Electron Device Letters.

[12]  Michael Schröter High-Frequency Circuit Design Oriented Compact Bipolar Transistor Modeling with HICUM , 2005, IEICE Trans. Electron..

[13]  John D. Cressler,et al.  A Physics-Based Circuit Aging Model for Mixed-Mode Degradation in SiGe HBTs , 2016, IEEE Transactions on Electron Devices.

[14]  F. Pavanello Uni-travelling carrier photodiodes and metal mesh filters based on sub-wavelength apertures for THz applications , 2013 .

[15]  Tadao Nagatsuma,et al.  Handbook of Terahertz Technologies : Devices and Applications , 2015 .

[16]  François Marc,et al.  Preliminary results of storage accelerated aging test on InP/GaAsSb DHBT , 2010, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[17]  G. A. Koné,et al.  Analysis of InP/GaAsSb DHBT failure mechanisms under accelerated aging tests , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[18]  Tadao Nagatsuma,et al.  Self-Heterodyne Spectrometer Using Uni-Traveling-Carrier Photodiodes for Terahertz-Wave Generators and Optoelectronic Mixers , 2014, Journal of Lightwave Technology.

[19]  N. Labat,et al.  Study of Failure Mechanisms in InP/GaAsSb/InP DHBT Under Bias and Thermal Stress , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[20]  Shoji Yamahata,et al.  Emitter-metal-related degradation in InP-based HBTs operating at high current density and its suppression by refractory metal , 2009, Microelectron. Reliab..

[21]  S. Thomas,et al.  Reliability of 1/spl times/5 /spl mu/m/sup 2/ emitter InAlAs/InGaAs HBTs under bias and thermal stress , 2002, GaAs Reliability 2002 Workshop.

[22]  Bias- and Temperature-Dependent Accumulated Stress Modeling of Mixed-Mode Damage in SiGe HBTs , 2015, IEEE Transactions on Electron Devices.

[23]  Bing-Ruey Wu,et al.  Type-II GaAsSb/InP DHBTs with Record fT = 670 GHz and Simultaneous fT, fMAX ≫ 400 GHz , 2007, 2007 IEEE International Electron Devices Meeting.

[24]  Hyun-chul Park,et al.  An Integrated 40 Gbit/s Optical Costas Receiver , 2013, Journal of Lightwave Technology.

[25]  Mark J. W. Rodwell,et al.  Highly integrated InP HBT optical receivers , 1999 .

[26]  François Marc,et al.  Reliability of submicron InGaAs/InP DHBT under thermal and electrical stresses , 2011, Microelectron. Reliab..

[27]  Cristell Maneux,et al.  Experimental procedure for the evaluation of GaAs-based HBT's reliability , 2001 .

[28]  O. Ostinelli,et al.  InP/GaAsSb DHBTs With 500-GHz Maximum Oscillation Frequency , 2011, IEEE Electron Device Letters.

[29]  Ali Emre Pusane,et al.  A lifetime-aware analog circuit sizing tool , 2016, Integr..

[30]  Chenming Hu,et al.  Lucky-electron model of channel hot-electron injection in MOSFET'S , 1984, IEEE Transactions on Electron Devices.

[31]  Zach Griffith,et al.  A 180mW InP HBT Power Amplifier MMIC at 214 GHz , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[32]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[33]  François Marc,et al.  Advancements on reliability-aware analog circuit design , 2012 .

[34]  P. Garcia,et al.  Reliability study under DC stress on mmW LNA, Mixer and VCO , 2012, 2012 IEEE International Reliability Physics Symposium (IRPS).

[35]  Efthymios Rouvalis,et al.  A Terahertz Scanner , 2009 .

[36]  Thomas Zimmer,et al.  Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit , 2015, Microelectron. Reliab..

[37]  N. Labat,et al.  Evidence of RTS noise in emitter-base periphery of InP/GaAsSb/InP HBT , 2008, 2008 20th International Conference on Indium Phosphide and Related Materials.

[38]  Helmut Graeb,et al.  Lifetime Yield Optimization of Analog Circuits Considering Process Variations and Parameter Degradations , 2011 .

[39]  Roberto Menozzi,et al.  A study of the DC and RF degradation of Be-doped AlGaAs/GaAs HBTs under constant current stress , 1997, 1997 GaAs Reliability Workshop. Proceedings.

[40]  D. Celi,et al.  A computationally efficient physics-based compact bipolar transistor model for circuit Design-part II: parameter extraction and experimental results , 2006, IEEE Transactions on Electron Devices.

[41]  O. Ostinelli,et al.  600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded-Base and fT x BVCEO ≫ 2.5 THz-V at Room Temperature , 2007, 2007 IEEE International Electron Devices Meeting.

[42]  Francisco V. Fernández,et al.  Reliability simulation for analog ICs: Goals, solutions, and challenges , 2016, Integr..

[43]  A. Konczykowska,et al.  InP DHBT transimpedance amplifiers with automatic offset compensation for 100 Gbit/s optical communications , 2010, The 5th European Microwave Integrated Circuits Conference.

[44]  Z. Griffith,et al.  Transistor and circuit design for 100-200-GHz ICs , 2005, IEEE Journal of Solid-State Circuits.

[45]  L. Coldren,et al.  An Optical Phase-Locked Loop Photonic Integrated Circuit , 2010, Journal of Lightwave Technology.

[46]  A. Tasch,et al.  A pseudo-lucky electron model for simulation of electron gate current in submicron NMOSFET's , 1996 .

[47]  Jean Godin,et al.  40 Gbit/s transmission: III–V integrated circuits for opto-electronic interfaces , 2003, Ann. des Télécommunications.

[48]  C. Maneux,et al.  Analysis of GaAs HBT failure mechanisms: impact on life test strategy , 1997, Proceedings of the 1997 6th International Symposium on the Physical and Failure Analysis of Integrated Circuits.

[49]  A. Hirata,et al.  High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link , 2004, IEEE Transactions on Microwave Theory and Techniques.

[50]  C. Maneux,et al.  Reliability evaluation of GaAs HBT technologies , 1999, 1999 Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications. EDMO (Cat. No.99TH8401).

[51]  Jean-François Lampin,et al.  THz Communications using Photonics and Electronic Devices: the Race to Data-Rate , 2015 .

[52]  François Marc,et al.  Investigation of the degradation mechanisms of InP/InGaAs DHBT under bias stress conditions to achieve electrical aging model for circuit design , 2011, Microelectron. Reliab..

[53]  Nathalie Labat,et al.  InP/InGaAs/InP DHBT submitted to bias and thermal stresses: LF base noise analysis , 2004 .

[54]  François Marc,et al.  Thermal aging model of InP/InGaAs/InP DHBT , 2010, Microelectron. Reliab..

[55]  Vincent Houtsma,et al.  Investigation of stressing InP/InGaAs DHBTs under high current density , 2003 .

[56]  J. Y. Chi,et al.  Mechanism for the initial current gain increase in carbon-doped heterostructure bipolar transistors , 1997, 1997 GaAs Reliability Workshop. Proceedings.

[57]  Olivier Leclerc,et al.  Toward High-Speed 40-Gbit/s Transponders , 2006, Proceedings of the IEEE.

[58]  L. Rushing,et al.  Determination of reliability on MOCVD grown InGaP/GaAs HBT's under both thermal and current acceleration stresses , 2001, 2001 GaAs Reliability Workshop. Proceedings (IEEE Cat. No.01TH8602).

[59]  J.E. Bowers,et al.  Integrated Coherent Receivers for High-Linearity Microwave Photonic Links , 2008, Journal of Lightwave Technology.

[60]  H. Jackel,et al.  Impact of surface traps on downscaled InP/InGaAs DHBTs , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[61]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[62]  T. Henderson Modeling HBT ledge variations for insight into GaAs HBT reliability , 2001, 2001 GaAs Reliability Workshop. Proceedings (IEEE Cat. No.01TH8602).

[63]  H. Levi,et al.  Improvement of aging simulation of electronic circuits using behavioral modeling , 2006, IEEE Transactions on Device and Materials Reliability.

[64]  Nathalie Labat,et al.  Two-dimensional DC simulation methodology for InP/GaAs0.51Sb0.49/InP heterojunction bipolar transistor , 2005 .

[65]  Y. Yang,et al.  Self-heating of submicrometer InP-InGaAs DHBTs , 2004, IEEE Electron Device Letters.

[66]  Tadao Nagatsuma,et al.  24 Gbit/s data transmission in 300 GHz band for future terahertz communications , 2012 .

[67]  A Travelling-Wave Uni-Travelling Photodiode for Continuous Wave Terahertz Generation , 2009 .

[68]  A. Sahoo Electro-thermal Characterizations, Compact Modeling and TCAD based Device Simulations of advanced SiGe:C BiCMOS HBTs and of nanometric CMOS FET , 2012 .

[69]  T. Zimmer,et al.  Submicrometer InP/InGaAs DHBT Architecture Enhancements Targeting Reliability Improvements , 2013, IEEE Transactions on Electron Devices.

[70]  Colombo R. Bolognesi,et al.  Impact of surface state modeling on the characteristics of InP/GaAsSb/InP DHBTs , 2007 .

[71]  J. D. Cressler,et al.  Predictive Physics-Based TCAD Modeling of the Mixed-Mode Degradation Mechanism in SiGe HBTs , 2012, IEEE Transactions on Electron Devices.

[72]  V. Jain,et al.  InP HBTs for THz frequency integrated circuits , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[73]  A. Yariv The Beginnings of Optoelectronic Integrated Circuits—A Personal Perspective , 2008, Journal of Lightwave Technology.

[74]  T. Kjellberg,et al.  A 165-Gb/s 4:1 multiplexer in InP DHBT technology , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[75]  T. Zimmer,et al.  Trends in Submicrometer InP-Based HBT Architecture Targeting Thermal Management , 2011, IEEE Transactions on Electron Devices.